Patents by Inventor Craig T. Walters

Craig T. Walters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10976219
    Abstract: A testing apparatus for use with a laser powder bed fusion additive manufacturing device that includes a laser for generating a non-stationary laser beam and a build plane positioned at a predetermined location relative to the non-stationary laser beam.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: April 13, 2021
    Inventors: Stanley L. Ream, Craig T. Walters, Paul Boulware, Jacob Hay
  • Publication number: 20210060861
    Abstract: A feed head apparatus for use in laser wire additive manufacturing, comprising an optical housing adapted to receive a laser beam therein and a wire therein, wherein the wire is adapted for use in additive manufacturing; a first reflective optic for receiving and reflecting the laser beam; and a second reflective optic for receiving laser light reflected by the first reflective optic, wherein the second reflective optic directs the laser light received from the first reflective optic onto the wire in a cylindrical configuration such that the wire and the cylinder of laser light are coaxial with regard to one another within a portion of the optical housing.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Inventors: Stanley L. Ream, Craig T. Walters, Jacob Hay
  • Publication number: 20200209107
    Abstract: A testing apparatus for use with a laser powder bed fusion additive manufacturing device that includes a laser for generating a non-stationary laser beam and a build plane positioned at a predetermined location relative to the non-stationary laser beam.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Inventors: Stanley L. Ream, Craig T. Walters, Paul Boulware, Jacob Hay
  • Patent number: 10627311
    Abstract: A testing apparatus adapted to be placed within a laser powder bed fusion additive manufacturing device that includes a laser for generating a non-stationary laser beam and a build plane positioned at a predetermined location relative to the non-stationary laser beam.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 21, 2020
    Assignee: Edison Welding Institute, Inc.
    Inventors: Stanley L. Ream, Craig T. Walters, Paul Boulware, Jacob Hay
  • Publication number: 20190391363
    Abstract: A laser beam alignment system includes at least one mirror with a surface pattern configured to receive and reflect a laser beam, at least one detector configured to detect a deflected portion of a laser beam from the mirror, and at least one controller configured to communicate with the at least one mirror and the at least one detector and to control the mirror position on the basis of the deflected portion of the laser beam.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Applicant: Southwest Research Institute
    Inventors: Stanley L. Ream, Craig T. Walters, William C. Flannigan
  • Publication number: 20190301970
    Abstract: A testing apparatus adapted to be placed within a laser powder bed fusion additive manufacturing device that includes a laser for generating a non-stationary laser beam and a build plane positioned at a predetermined location relative to the non-stationary laser beam.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Inventors: Stanley L. Ream, Craig T. Walters, Paul Boulware, Jacob Hay
  • Patent number: 9375974
    Abstract: A system for removing a coating from a surface is provided. This system includes a laser scanner, wherein the laser scanner further includes at least one laser source, wherein the at least one laser source is operative to generate at least one laser beam, and wherein the laser beam is directed onto a work surface by the laser scanner; and a controller for operating the laser scanner. The controller further includes an imaging device for imaging the work surface; a lighting device for illuminating the work surface and overwhelming light generated by the interaction of the laser beam with the work surface; and a processor for processing information collected by the imaging device and adjusting the power output of the at least one laser source, if and when desirable or necessary.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 28, 2016
    Assignee: Edison Welding Institute, Inc.
    Inventors: Stanley L. Ream, Craig T. Walters
  • Patent number: 8481886
    Abstract: A laser scanner system for removing a coating from a surface.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 9, 2013
    Assignee: Edison Welding Institute
    Inventors: Stanley L. Ream, Craig T. Walters
  • Patent number: 8225664
    Abstract: Exemplary embodiments are disclosed for the use of Lamb waves in laser bond inspection.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: July 24, 2012
    Assignee: LSP Technologies
    Inventors: David W. Sokol, Craig T. Walters, Kevin R. Housen, Richard H. Bossi, Steven M. Toller
  • Publication number: 20120145685
    Abstract: A system for removing a coating from a surface is provided. This system includes a laser scanner, wherein the laser scanner further includes at least one laser source, wherein the at least one laser source is operative to generate at least one laser beam, and wherein the laser beam is directed onto a work surface by the laser scanner; and a controller for operating the laser scanner. The controller further includes an imaging device for imaging the work surface; a lighting device for illuminating the work surface and overwhelming light generated by the interaction of the laser beam with the work surface; and a processor for processing information collected by the imaging device and adjusting the power output of the at least one laser source, if and when desirable or necessary.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 14, 2012
    Applicant: EDISON WELDING INSTITUTE, INC.
    Inventors: Stanley L. REAM, Craig T. WALTERS
  • Patent number: 8156811
    Abstract: A diagnostic means to enable real-time inspection of bonded structures. The disclosed apparatus detects bond failure stress waves on-axis from the front side (beam application side). Pi-box and pi-rail EMAT gauges can be used with the disclosed apparatus. An inductively coupled EMAT may also be employed. An improved means to remotely deliver an interrogating laser beam to a surface is provided. The process head may utilize a water column or a water film. The water film process head may include the use of either a single water film or two spaced apart water films. The disclosed apparatus can be used with bonded composite structures, bonded structures using various materials, and to determine the dynamic strength of unbonded solid materials. The apparatus may also be used in other applications that require remote flexible delivery of a localized stress wave to a material and/or diagnosis of the resultant stress waves.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: April 17, 2012
    Assignee: LSP Technologies, Inc.
    Inventors: Steven M. Toller, Craig T. Walters
  • Publication number: 20110147354
    Abstract: A laser scanner system for removing a coating from a surface.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 23, 2011
    Applicant: EDISON WELDING INSTITUTE, INC.
    Inventors: Stanley L. REAM, Craig T. WALTERS
  • Patent number: 7775122
    Abstract: Tape overlays for use in laser bond inspection are provided, as well as laser bond inspection systems and methods utilizing tape overlays.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: August 17, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: Steven M. Toller, David W. Sokol, Craig T. Walters
  • Patent number: 7770454
    Abstract: A system for evaluating the integrity of a bonded joint in an article includes a laser configured in a laser shock processing arrangement to perform a laser shock processing treatment on the article. A beam delivery system employs an articulated arm assembly to communicate the radiant energy emitted by the laser to a process head proximate the article. The laser shock processing treatment causes the formation of shockwaves that propagate through the article, inducing internal stress wave activity that characteristically interacts with the bonded joint. A sensor detects a stress wave signature emanating from the article, which is indicative of the integrity of the bond. A detector such as a non-contact electromagnetic acoustic transducer provides a measure of the stress wave signature in the form of surface motion measurements.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 10, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: David W. Sokol, Craig T. Walters, Jeff L. Dulaney, Steven M. Toller
  • Patent number: 7772520
    Abstract: A hand-held apparatus is disclosed, where that hand-held apparatus comprises a hand piece having an output end, a switch disposed on that hand piece, wherein that switch includes “on” position and an “off” position, and wherein a laser beam is directed outwardly from the output end of the hand piece when the switch is disposed in the “on” position. In certain embodiments, a lasing device is disposed within the hand piece. In other embodiments, a lasing device is disposed external to the hand piece, wherein that lasing device is interconnected with the hand piece by a fiber optic cable.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 10, 2010
    Assignee: Climax Molybdenum Company
    Inventors: Frederick N. Bushroe, Mohamed H. Khan, Craig T. Walters
  • Patent number: 7752953
    Abstract: A system for neutralizing a buried mine includes a laser that is configured to generate laser energy that communicates through the covering ground material and accesses the mine in a manner sufficient to neutralize the mine. Neutralization can occur by deflagration or detonation. The laser includes a solid-state lasing medium that is run substantially uncooled during the lasing run. Namely, the lasing medium is operated without cooling until the lasing medium reaches a temperature where thermal population in a lower laser level begins to significantly lower inversion density. Following completion of the lasing run, the lasing medium is cooled at a rate limited only by a thermal stress fracture level of the lasing medium. Operation of the laser in this manner permits the laser to deliver high-irradiance, high-repetition rate pulses according to a burst mode operation that successfully accomplishes neutralization in a desired time period.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: July 13, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: David W. Sokol, Jeff L. Dulaney, Craig T. Walters
  • Patent number: 7735377
    Abstract: Methods, systems, and apparatuses are provided for generation of focused stress waves that selectively apply tensile stress to local regions of a bonded article.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: June 15, 2010
    Assignees: LSP Technologies, Inc., The Boeing Company
    Inventors: David W. Sokol, Craig T. Walters, Steven M. Toller, Richard H. Bossi, Kevin R. Housen
  • Patent number: 7509876
    Abstract: Methods, systems, and apparatuses are provided for generation of focused stress waves that selectively apply tensile stress to local regions of a bonded article.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: March 31, 2009
    Assignees: LSP Technologies, Inc., The Boeing Company
    Inventors: David W. Sokol, Craig T. Walters, Kevin R. Houson, Richard H. Bossi, Steven M. Toller
  • Publication number: 20080257048
    Abstract: A diagnostic means to enable real-time inspection of bonded structures. The disclosed apparatus detects bond failure stress waves on-axis from the front side (beam application side). Pi-box and pi-rail EMAT gauges can be used with the disclosed apparatus. An inductively coupled EMAT may also be employed. An improved means to remotely deliver an interrogating laser beam to a surface is provided. The process head may utilize a water column or a water film. The water film process head may include the use of either a single water film or two spaced apart water films. The disclosed apparatus can be used with bonded composite structures, bonded structures using various materials, and to determine the dynamic strength of unbonded solid materials. The apparatus may also be used in other applications that require remote flexible delivery of a localized stress wave to a material and/or diagnosis of the resultant stress waves.
    Type: Application
    Filed: September 15, 2005
    Publication date: October 23, 2008
    Inventors: Craig T. Walters, Steven M. Toller
  • Publication number: 20040200341
    Abstract: A system for neutralizing a buried mine includes a laser that is configured to generate laser energy that communicates through the covering ground material and accesses the mine in a manner sufficient to neutralize the mine. Neutralization can occur by deflagration or detonation. The laser includes a solid-state lasing medium that is run substantially uncooled during the lasing run. Namely, the lasing medium is operated without cooling until the lasing medium reaches a temperature where thermal population in a lower laser level begins to significantly lower inversion density. Following completion of the lasing run, the lasing medium is cooled at a rate limited only by a thermal stress fracture level of the lasing medium. Operation of the laser in this manner permits the laser to deliver high-irradiance, high-repetition rate pulses according to a burst mode operation that successfully accomplishes neutralization in a desired time period.
    Type: Application
    Filed: March 12, 2003
    Publication date: October 14, 2004
    Inventors: Craig T. Walters, Jeff L. Dulaney, David W. Sokol