Patents by Inventor Craig William Cone

Craig William Cone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197462
    Abstract: A method of inhibiting evaporation of a formable material on a substrate, the method comprising holding the substrate with a substrate chuck, the substrate chuck being positioned within a central opening of a frame such that the frame surrounds at least a portion of the substrate chuck, supplying the formable material or a volatile material different from the formable material to a portion of the frame surrounding the substrate chuck, and dispensing the formable material on the substrate.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Inventors: Steven C. Shackleton, Edward Brian Fletcher, Zhengmao Ye, Craig William Cone, Hiroyuki Kondo
  • Patent number: 11526076
    Abstract: A dispensing system comprises a first dispenser and a second dispenser each including a first end, a second end, a longitudinal axis extending through the first end and the second end, and a set of nozzles arranged about the longitudinal axis. The first dispenser is positioned relative to the second dispenser such that the longitudinal axis of the first dispenser is non-coaxial with the longitudinal axis of the second dispenser. The dispensing system also comprises a substrate chuck configured to hold a substrate and a rotation mechanism configured to rotate the substrate chuck around a rotation axis or configured to rotate the first dispenser and the second dispenser around the rotation axis.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: December 13, 2022
    Assignee: Canon Kabushiki Kaisha
    Inventors: Craig William Cone, Qi Ni, Steven Wayne Burns
  • Publication number: 20220155677
    Abstract: A dispensing system comprises a first dispenser and a second dispenser each including a first end, a second end, a longitudinal axis extending through the first end and the second end, and a set of nozzles arranged about the longitudinal axis. The first dispenser is positioned relative to the second dispenser such that the longitudinal axis of the first dispenser is non-coaxial with the longitudinal axis of the second dispenser. The dispensing system also comprises a substrate chuck configured to hold a substrate and a rotation mechanism configured to rotate the substrate chuck around a rotation axis or configured to rotate the first dispenser and the second dispenser around the rotation axis.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 19, 2022
    Inventors: Craig William Cone, Qi Ni, Steven Wayne Burns
  • Publication number: 20220126332
    Abstract: A method of cleaning a fluid dispenser for dispensing a material during non-contact maintenance of the fluid dispenser. The fluid dispenser including a plurality of nozzles disposed on a faceplate. The method including applying a suction force onto a surface of the faceplate using a suction apparatus, the suction apparatus being translated from one end of the faceplate to an opposite end of the faceplate such that a portion of nozzles from the plurality of nozzles are exposed to the suction force. The method continues by vibrating a menisci of the portion of nozzles that are exposed to the suction force to remove at least a portion of the material accumulated on the faceplate.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Craig William Cone, Qi Ni, Hiroyuki Kondo, Antoine Dellinger, Steven C. Shackleton
  • Patent number: 11262651
    Abstract: A method of inspecting a dispenser including a faceplate comprises translating a sensor across the faceplate while measuring a distance between the sensor and the faceplate. The sensor is oriented such that a longitudinal axis of the sensor extends at an acute angle relative to a longitudinal axis of the faceplate. The method may include translating another sensor across the faceplate while measuring the same distance. Or the method may include another translating of the sensor across the faceplate while measuring the same distance. In either case, the sensor is oriented such that the longitudinal axis of the sensor extends at an obtuse angle relative to the longitudinal axis of the faceplate. The method includes determining, based on the measured distances, whether an amount of accumulated formable material on the surface of the faceplate is greater than a predetermined value.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 1, 2022
    Assignee: Canon Kabushiki Kaisha
    Inventors: Craig William Cone, Steven C. Shackleton, Brent Andrew Snyder, James W. Irving, Brandyn L. Kinsey
  • Patent number: 11215921
    Abstract: A fabrication method comprises selecting an initial drop pattern defining a position of drops of a formable material, the initial drop pattern comprising a grid pattern of drops, designating the drops of the grid pattern to be dispensed by a first series of nozzles of a dispenser based on a spacing between drops in the Y-dimension; generating a modified drop pattern by shifting the grid pattern in a first direction along the Y-dimension, wherein a shift distance is selected such that the drops of the shifted grid pattern are designated to be dispensed from a second series of nozzles of the dispenser; dispensing the plurality of drops according to the modified drop pattern onto a substrate; during the dispensing of the drops, shifting a position of the stage or dispenser along the Y-dimension opposite to the first direction by an amount equal to the shift distance.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: January 4, 2022
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ecron D. Thompson, Craig William Cone, Logan L. Simpson, Wei Zhang, James W. Irving
  • Patent number: 11209730
    Abstract: One embodiment is a method that includes generating drop pattern information. The method may comprise receiving pattern information. The pattern information may include one or both of: a substrate pattern of a representative substrate; and a template pattern of a representative template. The method may further comprise receiving offset information about a particular substrate that is representative of a measured state of the particular substrate relative to a reference state. The drop pattern information may represent a plurality of positions to place droplets of formable material on the particular substrate. The method may further comprise outputting the drop pattern information that is representative of the formable material that fills a volume between the template and the particular substrate that is in the measured state and the formable material does not spread into a border region at an edge of the particular substrate.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 28, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Logan L. Simpson, Steven Wayne Burns, Jason Battin, Niyaz Khusnatdinov, Christopher Ellis Jones, Craig William Cone, Wei Zhang, James W. Irving
  • Publication number: 20210373437
    Abstract: A method of inspecting a dispenser including a faceplate comprises translating a sensor across the faceplate while measuring a distance between the sensor and the faceplate. The sensor is oriented such that a longitudinal axis of the sensor extends at an acute angle relative to a longitudinal axis of the faceplate. The method may include translating another sensor across the faceplate while measuring the same distance. Or the method may include another translating of the sensor across the faceplate while measuring the same distance. In either case, the sensor is oriented such that the longitudinal axis of the sensor extends at an obtuse angle relative to the longitudinal axis of the faceplate. The method includes determining, based on the measured distances, whether an amount of accumulated formable material on the surface of the faceplate is greater than a predetermined value.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 2, 2021
    Inventors: Craig William Cone, Steven C. Shackleton, Brent Andrew Snyder, James W. Irving, Brandyn L. Kinsey
  • Publication number: 20210318609
    Abstract: A method of cleaning a dispenser including a faceplate, comprises emitting light over the surface of the faceplate across the width of the faceplate, measuring an intensity of the light at a plurality of points on the surface of the faceplate after the light has passed over the width, determining, based on the measured light intensity, whether an amount of accumulated formable material on the faceplate is greater than a predetermined value, and in a case that the amount of accumulated formable material is greater than a predetermined value, imparting a suction force on the surface of the faceplate using the vacuum at a distance from the faceplate to remove at least a portion of the accumulated formable material from the surface of the faceplate.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 14, 2021
    Inventors: Craig William Cone, Roger R. Wenzel, Jason Battin, Antoine Dellinger, Hiroyuki Kondo
  • Patent number: 11126079
    Abstract: A method of cleaning a dispenser including a faceplate, comprises emitting light over the surface of the faceplate across the width of the faceplate, measuring an intensity of the light at a plurality of points on the surface of the faceplate after the light has passed over the width, determining, based on the measured light intensity, whether an amount of accumulated formable material on the faceplate is greater than a predetermined value, and in a case that the amount of accumulated formable material is greater than a predetermined value, imparting a suction force on the surface of the faceplate using the vacuum at a distance from the faceplate to remove at least a portion of the accumulated formable material from the surface of the faceplate.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: September 21, 2021
    Assignee: Canon Kabushiki Kaisha
    Inventors: Craig William Cone, Roger R. Wenzel, Jason Battin, Antoine Dellinger, Hiroyuki Kondo
  • Publication number: 20210132491
    Abstract: A fabrication method comprises selecting an initial drop pattern defining a position of drops of a formable material, the initial drop pattern comprising a grid pattern of drops, designating the drops of the grid pattern to be dispensed by a first series of nozzles of a dispenser based on a spacing between drops in the Y-dimension; generating a modified drop pattern by shifting the grid pattern in a first direction along the Y-dimension, wherein a shift distance is selected such that the drops of the shifted grid pattern are designated to be dispensed from a second series of nozzles of the dispenser; dispensing the plurality of drops according to the modified drop pattern onto a substrate; during the dispensing of the drops, shifting a position of the stage or dispenser along the Y-dimension opposite to the first direction by an amount equal to the shift distance.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventors: Ecron D. Thompson, Craig William Cone, Logan L. Simpson, Wei Zhang, James W. Irving
  • Patent number: 10788749
    Abstract: An imprinting method and system in which, a template is imprinted onto formable material at a plurality of locations on a substrate. A template filling time varies among the plurality of locations. The template filling time for each of the locations is determined prior to applying the formable material to the substrate. The template is aligned to the substrate each time the template is imprinted onto the formable material during an alignment convergence period that is determined to have completed when real time alignment data indicates that alignment of the template and the substrate is within specified limits. The alignment convergence period and the template filing period overlap. Curing the formable material in the template at each of the plurality of locations after both the alignment convergence period has completed and the template filing period has expired.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 29, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Craig William Cone
  • Publication number: 20200292934
    Abstract: One embodiment is a method that includes generating drop pattern information. The method may comprise receiving pattern information. The pattern information may include one or both of: a substrate pattern of a representative substrate; and a template pattern of a representative template. The method may further comprise receiving offset information about a particular substrate that is representative of a measured state of the particular substrate relative to a reference state. The drop pattern information may represent a plurality of positions to place droplets of formable material on the particular substrate. The method may further comprise outputting the drop pattern information that is representative of the formable material that fills a volume between the template and the particular substrate that is in the measured state and the formable material does not spread into a border region at an edge of the particular substrate.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Inventors: Logan L. Simpson, Steven Wayne Burns, Jason Battin, Niyaz Khusnatdinov, Christopher Ellis Jones, Craig William Cone, Wei Zhang, James W. Irving
  • Patent number: 10663869
    Abstract: An imprinting system and method. An illumination system for imprinting, during a first period of time, that illuminates a first portion of boundary region that surrounds a pattern region with a thickening dosage of light that is within a first dose range, such that the fluid in the first portion of the boundary region does not solidify but does increase a viscosity of the fluid. The illumination system, during a second period of time, illuminates the pattern region with a curing dosage of light that is within a second dose range higher than the first dose range. Prior to illumination, the imprinting includes dispensing droplets and holding a template with a template chuck such that the template contact the droplets and the droplets merge and form a fluid front that spreads through the pattern region and towards the boundary region.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: May 26, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Niyaz Khusnatdinov, Edward Brian Fletcher, Craig William Cone, Douglas J. Resnick, Zhengmao Ye
  • Publication number: 20190179228
    Abstract: An imprinting system and method. An illumination system for imprinting, during a first period of time, that illuminates a first portion of boundary region that surrounds a pattern region with a thickening dosage of light that is within a first dose range, such that the fluid in the first portion of the boundary region does not solidify but does increase a viscosity of the fluid. The illumination system, during a second period of time, illuminates the pattern region with a curing dosage of light that is within a second dose range higher than the first dose range. Prior to illumination, the imprinting includes dispensing droplets and holding a template with a template chuck such that the template contact the droplets and the droplets merge and form a fluid front that spreads through the pattern region and towards the boundary region.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Niyaz Khusnatdinov, Edward Brian Fletcher, Craig William Cone, Douglas J. Resnick, Zhengmao Ye
  • Publication number: 20190163052
    Abstract: An imprinting method and system in which, a template is imprinted onto formable material at a plurality of locations on a substrate. A template filling time varies among the plurality of locations. The template filling time for each of the locations is determined prior to applying the formable material to the substrate. The template is aligned to the substrate each time the template is imprinted onto the formable material during an alignment convergence period that is determined to have completed when real time alignment data indicates that alignment of the template and the substrate is within specified limits. The alignment convergence period and the template filing period overlap. Curing the formable material in the template at each of the plurality of locations after both the alignment convergence period has completed and the template filing period has expired.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventor: Craig William Cone