Patents by Inventor Crisita Carmen H. Atienza

Crisita Carmen H. Atienza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926605
    Abstract: A 5,5?-Di-(protected)-2,2?-bifuran: wherein each R1 is independently an unsubstituted or substituted 5- or 6-member 1,3-dioxo-2-yl ring radical. Processes for making the bifuran include coupling 2-(protected)-furfural. Processes for using the bifuran include deprotection, functionalization, and/or polymerization to form a polyester. The polyester can be a renewable, high-performing polyester offering a combination of low cost of production, high sustainability, and excellent performance.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 12, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Stephen T. Cohn, Michael Salciccioli, Crisita Carmen H. Atienza, Alan A. Galuska
  • Patent number: 11859032
    Abstract: A process to produce a branched ethylene-?-olefin diene elastomer comprising combining a catalyst precursor and an activator with a feed comprising ethylene, C3 to C12 ?-olefins, and a dual-polymerizable diene to obtain a branched ethylene-?-olefin diene elastomer; where the catalyst precursor is selected from pyridyldiamide and quinolinyldiamido transition metal complexes. The branched ethylene-?-olefin diene elastomer may comprise within a range from 40 to 80 wt % of ethylene-derived units by weight of the branched ethylene-?-olefin diene elastomer, and 0.1 to 2 wt % of singly-polymerizable diene derived units, 0.1 to 2 wt % of singly-polymerizable diene derived units, and the remainder comprising C3 to C12 ?-olefin derived units, wherein the branched ethylene-?-olefin diene elastomer has a weight average molecular weight (Mw) within a range from 100 kg/mole to 300 kg/mole, an average branching index (g?avg) of 0.9 or more, and a branching index at very high Mw (g?1000) of less than 0.9.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: January 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Rhutesh K. Shah, Ron Walker, John R. Hagadorn, Sudhin Datta
  • Patent number: 11649256
    Abstract: The present disclosure provides catalyst compounds represented by Formula (I): where Q is OR13, SR13, NR13R14, PR13R14, or a heterocyclic ring; each R1-14 is independently hydrogen, C1-C40 hydrocarbyl, substituted C1-C40 hydrocarbyl, a heteroatom, or a heteroatom-containing group, or multiple R1-14 are joined together to form a C4-C62 cyclic, heterocyclic, or polycyclic ring structure, or combination(s) thereof; each X1 and X2 is independently C1-C20 hydrocarbyl, substituted C1-C20 hydrocarbyl, a heteroatom, or a heteroatom-containing group, or X1 and X2 join together to form a C4-C62 cyclic, heterocyclic, or polycyclic ring structure; and Y is a hydrocarbyl. The present disclosure also provides catalyst systems including an activator, a support, and a catalyst of the present disclosure. The present disclosure also provides polymerization processes including introducing olefin monomers to a catalyst system.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: May 16, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gursu Culcu, Catherine A. Faler, Crisita Carmen H. Atienza, David A. Cano, John R. Hagadorn
  • Patent number: 11629209
    Abstract: This invention relates to a catalyst system including the reaction product of a support (such as a fluorided silica support that preferably has not been calcined at a temperature of 400° C. or more), an activator and at least two different transition metal catalyst compounds; methods of making such catalyst systems, polymerization processes using such catalyst systems and polymers made therefrom.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: April 18, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rohan A. Hule, Antonios K. Doufas, Derek W. Thurman, Crisita Carmen H. Atienza, Matthew W. Holtcamp, David F. Sanders, Matthew S. Bedoya
  • Publication number: 20220289883
    Abstract: This invention relates to a catalyst system including the reaction product of a support (such as a fluorided silica support that preferably has not been calcined at a temperature of 400° C. or more), an activator and at least two different transition metal catalyst compounds; methods of making such catalyst systems, polymerization processes using such catalyst systems and polymers made therefrom.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 15, 2022
    Inventors: Rohan A. HULE, Antonios K. DOUFAS, Derek W. THURMAN, Crisita Carmen H. ATIENZA, Matthew W. HOLTCAMP, David F. SANDERS, Matthew S. BEDOYA
  • Patent number: 11414436
    Abstract: The present disclosure provides borate or aluminate activators comprising cations having linear alkyl groups, catalyst systems comprising, and methods for polymerizing olefins using such activators. Specifically, the present disclosure provides activator compounds represented by Formula: [R1R2R3EH]d+[Mk+Qn]d?, wherein: E is nitrogen or phosphorous; d is 1, 2 or 3; k is 1, 2, or 3; n is 1, 2, 3, 4, 5, or 6; n?k=d; R1 is C1-C20 linear alkyl group; each of R2 and R3 is a C1-C40 linear alkyl group, a meta- and/or para-substituted phenyl group, an alkoxy group, a silyl group, a halogen, or a halogen containing group, wherein R1+R2+R3?15 carbon atoms; M is an element selected from group 13, typically B or Al; and each Q is independently a hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, or halosubstituted-hydrocarbyl radical, provided that when Q is a fluorophenyl group, then R2 is not a C1-C40 linear alkyl group.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: August 16, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine A. Faler, Margaret T. Whalley, Peijun Jiang, John R. Hagadorn, Crisita Carmen H. Atienza, Alex E. Carpenter, George Rodriguez
  • Patent number: 11370860
    Abstract: This invention relates to a catalyst system including the reaction product of a support (such as a fluorided silica support that preferably has not been calcined at a temperature of 400° C. or more), an activator and at least two different transition metal catalyst compounds; methods of making such catalyst systems, polymerization processes using such catalyst systems and polymers made therefrom.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: June 28, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rohan A. Hule, Antonios K. Doufas, Derek W. Thurman, Crisita Carmen H. Atienza, Matthew W. Holtcamp, David F. Sanders, Matthew S. Bedoya
  • Patent number: 11285465
    Abstract: The present disclosure provides catalyst compounds including a nonsymmetric bridged amine bis(phenolate), catalyst systems including such, and uses thereof. Catalyst compounds, catalyst systems, and processes of the present disclosure can provide high comonomer content and high molecular weight polymers having narrow Mw/Mn values, contributing to good processability for the polymer itself and for the polymer used in a composition.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 29, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, David A. Cano, Catherine A. Faler, Margaret T. Whalley
  • Patent number: 11168162
    Abstract: The present disclosure provides polymerization processes to produce polymeric materials, such as olefin terpolymers, using transition metal catalysts having bridged phenolate ligands. The polymerization process includes contacting a transition metal complex with a mixture olefin monomers that contain ethylene, propylene, and a cyclic diene to produce an olefin polymer and recovering the olefin polymer. The mixture of olefin monomers can include specified weight ratios for the various olefin monomers. The transition metal complex includes a bridged phenolate ligand bonded to a metal atom via covalent bonds by two oxygens, a coordinate covalent bond by a Group 15 atom, and a coordinate covalent bond by a Group 15 or 16 atom. The transition metal complex provides relatively high endocyclic alkene/vinyl selectivity to minimize hyperbranching during the production of olefin polymeric materials, such as EPDM and other terpolymers that are free or substantially free of gels.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: November 9, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Rhutesh K. Shah
  • Publication number: 20210269567
    Abstract: A process to produce a branched ethylene-?-olefin diene elastomer comprising combining a catalyst precursor and an activator with a feed comprising ethylene, C3 to C12 ?-olefins, and a dual-polymerizable diene to obtain a branched ethylene-?-olefin diene elastomer; where the catalyst precursor is selected from pyridyldiamide and quinolinyldiamido transition metal complexes. The branched ethylene-?-olefin diene elastomer may comprise within a range from 40 to 80 wt % of ethylene-derived units by weight of the branched ethylene-?-olefin diene elastomer, and 0.1 to 2 wt % of singly-polymerizable diene derived units, 0.1 to 2 wt % of singly-polymerizable diene derived units, and the remainder comprising C3 to C12 ?-olefin derived units, wherein the branched ethylene-?-olefin diene elastomer has a weight average molecular weight (Mw) within a range from 100 kg/mole to 300 kg/mole, an average branching index (g?avgg) of 0.9 or more, and a branching index at very high Mw (g?1000) of less than 0.9.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Inventors: Crisita Carmen H. Atienza, Rhutesh K. Shah, Ron Walker, John R. Hagadorn, Sudhin Datta
  • Patent number: 11103860
    Abstract: This invention relates to a polymerization catalyst system comprising group 8 or 9 containing non-coordinating anion activator, a polymerization catalyst compound, optional support, and optional scavenger. Preferably, the activator comprises a compound represented by the formula: Hs(L)mM where M is a group 8 or 9 metal, s is 0 or 1, m 1, 2, 3, or 4, each L ligand is independently C?O, NR3, PR3, where each R, independently is halogen, haloalkyl, or haloaryl) or optionally two or more L ligands may together form a multiply-valent ligand complex. Further, this invention relates to anon-coordinating anion activator represented by the formula: [Zd]+[HsLmM]d?, where M, s, m, L, are as defined above, d is 1, 2, or 3 and Z is (L?-H) or a reducible Lewis acid; L? is a neutral Lewis base; H is hydrogen, and (L?-H) is a Bronsted acid.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: August 31, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alex E. Carpenter, Crisita Carmen H. Atienza
  • Patent number: 11066494
    Abstract: The present disclosure provides catalyst compounds having an amine bridged anilide phenolate ligand. In at least one embodiment, catalysts of the present disclosure provide catalyst activity values of about 90 gP/mmolCat·h?1 or greater and polyolefins, such as polyethylene copolymers, having comonomer content of from about 4 wt % to about 12 wt %, an Mn of about 90,000 g/mol or more, an Mw of 155,000 g/mol or more, and an Mw/Mn of from 1 to 2.5.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: July 20, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, David A. Cano, Catherine A. Faler, Margaret T. Whalley
  • Patent number: 11041034
    Abstract: A process to produce a branched ethylene-?-olefin diene elastomer comprising combining a catalyst precursor and an activator with a feed comprising ethylene, C3 to C12 ?-olefins, and a dual-polymerizable diene to obtain a branched ethylene-?-olefin diene elastomer; where the catalyst precursor is selected from pyridyldiamide and quinolinyldiamido transition metal complexes. The branched ethylene-?-olefin diene elastomer may comprise within a range from 40 to 80 wt % of ethylene-derived units by weight of the branched ethylene-?-olefin diene elastomer, and 0.1 to 2 wt % of singly-polymerizable diene derived units, 0.1 to 2 wt % of singly-polymerizable diene derived units, and the remainder comprising C3 to C12 ?-olefin derived units, wherein the branched ethylene-?-olefin diene elastomer has a weight average molecular weight (Mw) within a range from 100 kg/mole to 300 kg/mole, an average branching index (g?avg) of 0.9 or more, and a branching index at very high Mw (g?1000) of less than 0.9.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: June 22, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Rhutesh K. Shah, Ron Walker, John R. Hagadorn, Sudhin Datta
  • Patent number: 11028196
    Abstract: A composition comprising vinyl-terminated polyethylene having an Mn from about 200 g/mol to about 10,000 g/mol; and a comb polyolefin having polyethylene arms attached to a random copolymer backbone, said backbone including units derived from an alpha-olefin having 3 or more carbon atoms, where the polyethylene arms have an Mn from about 200 g/mol to about 10,000 g/mol, and where the comb polyolefin has an Mp from about 7,500 to about 400,000 g/mol.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 8, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Andy H. Tsou, Narayanaswami Dharmarajan, Crisita Carmen H. Atienza, Jian Yang
  • Publication number: 20210121863
    Abstract: The present disclosure provides a catalyst system having a salan catalyst compound and borate or aluminate activators comprising cations having alkyl groups and methods for polymerizing olefins using such catalyst systems. In still another embodiment, the present disclosure provides a polymerization process comprising a) contacting one or more olefin monomers with a catalyst system comprising: i) an activator as described herein, ii) a catalyst compound as described herein, and iii) optional support.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 29, 2021
    Inventors: Catherine A. Faler, Margaret T. Whalley, Gursu Culcu, Crisita Carmen H. Atienza
  • Publication number: 20210107927
    Abstract: The present disclosure provides catalyst compounds represented by Formula (I): where Q is OR13, SR13, NR13R14, PR13R14, or a heterocyclic ring; each R1-14 is independently hydrogen, C1-C40 hydrocarbyl, substituted C1-C40 hydrocarbyl, a heteroatom, or a heteroatom-containing group, or multiple R1-14 are joined together to form a C4-C62 cyclic, heterocyclic, or polycyclic ring structure, or combination(s) thereof; each X1 and X2 is independently C1-C20 hydrocarbyl, substituted C1-C20 hydrocarbyl, a heteroatom, or a heteroatom-containing group, or X1 and X2 join together to form a C4-C62 cyclic, heterocyclic, or polycyclic ring structure; and Y is a hydrocarbyl. The present disclosure also provides catalyst systems including an activator, a support, and a catalyst of the present disclosure. The present disclosure also provides polymerization processes including introducing olefin monomers to a catalyst system.
    Type: Application
    Filed: October 9, 2020
    Publication date: April 15, 2021
    Inventors: Gursu Culcu, Catherine A. Faler, Crisita Carmen H. Atienza, David A. Cano, John R. Hagadorn
  • Patent number: 10941229
    Abstract: The present disclosure provides group 4-, i.e., zirconium- and hafnium-, containing catalyst compounds having an ether bridged anilide phenolate ligand. Catalyst compounds of the present disclosure can be asymmetric, having an electron donating side of the catalyst and an electron deficient side of the catalyst. In at least one embodiment, catalysts of the present disclosure provide catalyst activity values of 400,000 gP/mmolCat·h?1 or greater and polyolefins, such as polyethylene copolymers, having comonomer content of from about 3.5 wt % to 8.5 wt %, an Mn of about 15,000 g/mol to about 140,000 g/mol, an Mw of from about 100,000 g/mol to about 300,000 g/mol, and a Mw/Mn of from 1 to 2.5. Catalysts, catalyst systems, and processes of the present disclosure can provide polymers having comonomer content of from 7 wt % to 12 wt %, such as from 8 wt % to 10 wt %).
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: March 9, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine A. Faler, Margaret T. Whalley, Crisita Carmen H. Atienza, David A. Cano
  • Patent number: 10927134
    Abstract: The present disclosure provides transition metal catalysts and the respective bridged phenolate ligands contained on the catalyst, as well as, catalyst systems and polymerization processes for producing polyolefins. The catalysts and the catalyst systems provide catalytic activity values of greater than 100 kg/mmol-hr, such as greater than 400 kg/mmol-hr or greater than 500 kg/mmol-hr.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: February 23, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, David A. Cano, Catherine A. Faler, Margaret T. Whalley
  • Publication number: 20210016265
    Abstract: This invention relates to a supported catalyst system comprising a first iron based catalyst, a second group 4 metal catalyst, a support material, and an activator; wherein the first catalyst is represented by Formula (I) and the second catalyst is represented by Formula (II):
    Type: Application
    Filed: June 23, 2020
    Publication date: January 21, 2021
    Inventors: Matthew W. Holtcamp, Crisita Carmen H. Atienza, David A. Cano, Matthew S. Bedoya
  • Publication number: 20210009545
    Abstract: A 5,5?-Di-(protected)-2,2?-bifuran: wherein each R1 is independently an unsubstituted or substituted 5- or 6-member 1,3-dioxo-2-yl ring radical. Processes for making the bifuran include coupling 2-(protected)-furfural. Processes for using the bifuran include deprotection, functionalization, and/or polymerization to form a polyester.
    Type: Application
    Filed: February 11, 2019
    Publication date: January 14, 2021
    Inventors: Kapil Kandel, Stephen T. Cohn, Michael Salciccioli, Crisita Carmen H. Atienza, Alan A. Galuska