Patents by Inventor Cristian A. Tivarus

Cristian A. Tivarus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230030282
    Abstract: A sensor chip including a resistor and a backside illuminated single photon avalanche diode (SPAD) that is connected to the resistor; and a sensor including a sensor chip with a resistor and a backside illuminated SPAD that is connected to the resistor. The backside illuminated SPAD including an anode, a cathode, and a multiplication structure.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Adarsh Basavalingappa, Cristian Tivarus, Sungin Hwang, Yoshiaki Tashiro
  • Patent number: 8748946
    Abstract: An electrical component includes a semiconductor layer having a first conductivity type and a interconnect layer disposed adjacent to a frontside of the semiconductor layer. At least one bond pad is disposed in the interconnect layer and formed adjacent to the frontside of the semiconductor layer. An opening formed from the backside of the semiconductor layer and through the semiconductor layer exposes at least a portion of the bond pad. A first region having a second conductivity type extends from the backside of the semiconductor layer to the frontside of the semiconductor layer and surrounds the opening. The first region can abut a perimeter of the opening or alternatively, a second region having the first conductivity type can be disposed between the first region and a perimeter of the opening.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: June 10, 2014
    Assignee: Omnivision Technologies, Inc.
    Inventors: John P. McCarten, Cristian A. Tivarus
  • Patent number: 8618458
    Abstract: A back-illuminated image sensor includes a sensor layer disposed between an insulating layer and a circuit layer electrically connected to the sensor layer. An imaging area includes a plurality of photodetectors is formed in the sensor layer and a well that spans the imaging area. The well can be disposed between the backside of the sensor layer and the photodetectors, or the well can be a buried well formed adjacent to the backside of the sensor layer with a region including formed between the photodetectors and the buried well. One or more side wells can be formed laterally adjacent to each photodetector. The dopant in the well has a segregation coefficient that causes the dopant to accumulate on the sensor layer side of an interface between the sensor layer and the insulating layer.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: December 31, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: John P. McCarten, Joseph R. Summa, Cristian A. Tivarus, Todd J. Anderson, Eric G. Stevens
  • Patent number: 8471939
    Abstract: An image sensor includes a first sensor layer having a first array of pixels and a second sensor layer having a second array of pixels. Each pixel of the first and second arrays has a photodetector for collecting charge in response to incident light, a charge-to-voltage conversion mechanism, and a transfer gate for selectively transferring charge from the photodetector to the charge-to-voltage mechanism. The first and second sensor layers each have a thicknesses to collect light with a first and second preselected ranges of wavelengths, respectively. A circuit layer is situated below the first sensor layer and has support circuitry for the pixels of the first and second sensor layers, and interlayer connectors are between the pixels of the first and second layers and the support circuitry.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 25, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Cristian A. Tivarus, John P. McCarten, Joseph R. Summa
  • Patent number: 8318580
    Abstract: An electrical component includes a semiconductor layer having a first conductivity type and a interconnect layer disposed adjacent to a frontside of the semiconductor layer. At least one bond pad is disposed in the interconnect layer and formed adjacent to the frontside of the semiconductor layer. An opening formed from the backside of the semiconductor layer and through the semiconductor layer exposes at least a portion of the bond pad. A first region having a second conductivity type extends from the backside of the semiconductor layer to the frontside of the semiconductor layer and surrounds the opening. The first region can abut a perimeter of the opening or alternatively, a second region having the first conductivity type can be disposed between the first region and a perimeter of the opening.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: November 27, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: John P. McCarten, Cristian A. Tivarus
  • Patent number: 8173535
    Abstract: A wafer structure for an image sensor includes a substrate that has a given conductivity type, a given dopant concentration, and a given concentration of oxygen. An intermediate epitaxial layer is formed over the substrate. The intermediate epitaxial layer has the same conductivity type and the same, or substantially the same, dopant concentration as the substrate but a lower oxygen concentration than the substrate. A thickness of the intermediate epitaxial layer is greater than the diffusion length of a minority carrier in the intermediate layer. A device epitaxial layer is formed over the intermediate epitaxial layer. The device epitaxial layer has the same conductivity type but lower dopant and oxygen concentrations than the substrate.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: May 8, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventor: Cristian A. Tivarus
  • Patent number: 8133769
    Abstract: A method for forming gettering sites and gettering impurities in a substrate layer includes producing a first masking layer over the substrate layer and patterning the masking layer to define openings at locations where trenches will be formed in the substrate layer at a later time. Ions are then implanted into the substrate layer to produce gettering sites. The gettering sites are disposed at a depth in the substrate layer such that the sites are removed when the trenches are formed. The first masking layer is removed and impurities driven to the gettering sites by thermally processing the substrate layer. A second masking layer is then produced over the substrate layer and patterned to define openings at locations where the trenches will be formed. The substrate layer is etched to produce the trenches. The gettering sites and gettered impurities are removed when the trenches are etched into the substrate layer.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 13, 2012
    Assignee: Truesense Imaging, Inc.
    Inventor: Cristian A. Tivarus
  • Patent number: 8076746
    Abstract: A back-illuminated image sensor includes a sensor layer of a first conductivity type having a frontside and a backside opposite the frontside. One or more frontside regions of a second conductivity type are formed in at least a portion of the frontside of the sensor layer. A backside region of the second conductivity type is formed in the backside of the sensor layer. A plurality of frontside photodetectors of the first conductivity type is disposed in the sensor layer. A distinct plurality of backside photodetectors of the first conductivity type separate from the plurality of frontside photodetectors are formed in the sensor layer contiguous to portions of the region of the second conductivity type. A voltage terminal is disposed on the frontside of the sensor layer. One or more connecting regions of the second conductivity type are disposed in respective portions of the sensor layer between the voltage terminal and the backside region for electrically connecting the voltage terminal to the backside region.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: December 13, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa, Eric G. Stevens, Hung Q. Doan, Robert M. Guidash
  • Patent number: 8054355
    Abstract: An image sensor includes a first sensor layer having a first array of pixels and a second sensor layer having a second array of pixels. Each of the pixels has an optical center. The first sensor layer is stacked over the second sensor layer such that the optical centers of the first array of pixels are offset from the optical centers of the second array to form a predetermined pattern.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 8, 2011
    Assignee: Omnivision Technologies, Inc.
    Inventors: John P. McCarten, Joseph R. Summa, Cristian A. Tivarus
  • Publication number: 20110269292
    Abstract: An electrical component includes a semiconductor layer having a first conductivity type and a interconnect layer disposed adjacent to a frontside of the semiconductor layer. At least one bond pad is disposed in the interconnect layer and formed adjacent to the frontside of the semiconductor layer. An opening formed from the backside of the semiconductor layer and through the semiconductor layer exposes at least a portion of the bond pad. A first region having a second conductivity type extends from the backside of the semiconductor layer to the frontside of the semiconductor layer and surrounds the opening. The first region can abut a perimeter of the opening or alternatively, a second region having the first conductivity type can be disposed between the first region and a perimeter of the opening.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Inventors: John P. McCarten, Cristian A. Tivarus
  • Publication number: 20110266658
    Abstract: An electrical component includes a semiconductor layer having a first conductivity type and a interconnect layer disposed adjacent to a frontside of the semiconductor layer. At least one bond pad is disposed in the interconnect layer and formed adjacent to the frontside of the semiconductor layer. An opening formed from the backside of the semiconductor layer and through the semiconductor layer exposes at least a portion of the bond pad. A first region having a second conductivity type extends from the backside of the semiconductor layer to the frontside of the semiconductor layer and surrounds the opening. The first region can abut a perimeter of the opening or alternatively, a second region having the first conductivity type can be disposed between the first region and a perimeter of the opening.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Inventors: John P. McCarten, Cristian A. Tivarus
  • Patent number: 8018016
    Abstract: A back-illuminated image sensor includes a sensor layer of a first conductivity type having a frontside and a backside opposite the frontside. An insulating layer is disposed over the backside. A circuit layer is formed adjacent to the frontside such that the sensor layer is positioned between the circuit layer and the insulating layer. One or more frontside regions of a second conductivity type are formed in at least a portion of the frontside of the sensor layer. A backside region of the second conductivity type is formed in the backside of the sensor layer. A plurality of frontside photodetectors of the first conductivity type is disposed in the sensor layer. A distinct plurality of backside photodetectors of the first conductivity type separate from the plurality of frontside photodetectors is formed in the sensor layer contiguous to portions of the backside region of the second conductivity type.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: September 13, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa, Eric G. Stevens, Hung Q. Doan, Robert M. Guidash
  • Publication number: 20110156195
    Abstract: An image sensor includes a sensor wafer and a circuit wafer electrically connected to the sensor wafer. The sensor wafer includes unit cells with each unit cell having at least one photodetector and a charge-to-voltage conversion region. The circuit wafer includes unit cells with each unit cell having an electrical node that is associated with each unit cell on the sensor wafer. An inter-wafer interconnect is connected between each charge-to-voltage conversion region on the sensor wafer and a respective electrical node on the circuit wafer. A location of a portion of the unit cells on the sensor wafer and a location of a corresponding portion of the unit cells on the circuit wafer are shifted a predetermined distance with respect to the locations of the remaining unit cells on the sensor and circuit wafers.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Inventors: Cristian A. Tivarus, John P. McCarten, Joseph R. Summa
  • Publication number: 20110156197
    Abstract: An image sensor includes a sensor wafer and a circuit wafer electrically connected to the sensor wafer. The sensor wafer includes unit cells with each unit cell having at least one photodetector and a charge-to-voltage conversion region. The circuit wafer includes unit cells with each unit cell having an electrical node associated with each unit cell on the sensor wafer. An inter-wafer interconnect is connected between each unit cell on the sensor wafer and a respective unit cell on the circuit wafer. The location of at least a portion of the inter-wafer interconnects is shifted or disposed at a different location with respect to the location of one or both components connected to the shifted inter-wafer interconnects. The locations of the inter-wafer interconnects can be disposed at different locations with respect to the locations of the charge-to-voltage conversion regions or with respect to the locations of the electrical nodes.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Inventors: Cristian A. Tivarus, John P. McCarten, Joseph R. Summa
  • Publication number: 20110147879
    Abstract: A wafer structure for an image sensor includes a substrate that has a given conductivity type, a given dopant concentration, and a given concentration of oxygen. An intermediate epitaxial layer is formed over the substrate. The intermediate epitaxial layer has the same conductivity type and the same, or substantially the same, dopant concentration as the substrate but a lower oxygen concentration than the substrate. A thickness of the intermediate epitaxial layer is greater than the diffusion length of a minority carrier in the intermediate layer. A device epitaxial layer is formed over the intermediate epitaxial layer. The device epitaxial layer has the same conductivity type but lower dopant and oxygen concentrations than the substrate.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Inventor: Cristian A. Tivarus
  • Patent number: 7965329
    Abstract: An image sensor includes (a) a first wafer having (i) a photosensitive area; (ii) a charge-to-voltage conversion region; (b) a second wafer having (i) a first amplifier that receives a signal from the charge-to-voltage conversion region; (c) an electrical interconnect connecting the charge-to-voltage conversion region to an input of the amplifier; (d) an electrically biased shield at least partially enclosing at least a portion of the electrical interconnect.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: June 21, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: John P. McCarten, Joseph R. Summa, Todd J. Anderson, Cristian A. Tivarus
  • Publication number: 20100327390
    Abstract: Back-illuminated image sensors include one or more contact implant regions disposed adjacent to a backside of a sensor layer. An electrically conductive material, including, but not limited to, a conductive lightshield, is disposed over the backside of the sensor layer. A backside well is formed in the sensor layer adjacent to the backside, and an insulating layer is disposed over the surface of the backside. Contacts formed in the insulating layer electrically connect the electrically conducting material to respective contact implant regions. At least a portion of the contact implant regions are arranged in a shape that corresponds to one or more pixel edges.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa
  • Publication number: 20100330728
    Abstract: A back-illuminated image sensor includes a sensor layer disposed between a circuit layer adjacent to a frontside of the sensor layer and a layer disposed on a backside of the sensor layer. One or more first alignment marks are formed in a layer in the circuit layer. A masking layer is aligned to the one or more first alignment marks. The masking layer includes openings that define locations for one or more second alignment marks. The one or more second alignment marks are then formed in or through the layer disposed on a backside of a sensor layer. One or more elements are formed in or on the backside of the sensor layer. The one or more elements are aligned to one or more second alignment marks.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa
  • Publication number: 20100327389
    Abstract: A back-illuminated image sensor includes a sensor layer of a first conductivity type having a frontside and a backside opposite the frontside. One or more frontside regions of the first conductivity type are formed in at least a portion of the frontside of the sensor layer. A backside region of the first conductivity type is formed in the backside of the sensor layer. A plurality of frontside photodetectors of a second conductivity type is disposed in the sensor layer adjacent to the frontside of the sensor layer. A distinct plurality of backside photodetectors of the second conductivity type separate from the plurality of frontside photodetectors are formed in the sensor layer contiguous to the backside region. One or more or more channel regions of the second conductivity type are disposed in respective portions of the sensor layer between the frontside photodetector and the backside photodetector in each photodetector pair.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa
  • Publication number: 20100327391
    Abstract: A back-illuminated image sensor includes a sensor layer of a first conductivity type having a frontside and a backside opposite the frontside. One or more regions of a second conductivity type are formed in at least a portion of the sensor layer adjacent to the frontside. The one or more regions are connected to a voltage terminal for biasing these regions to a predetermined voltage. A backside well of the second conductivity type is formed in the sensor layer adjacent to the backside. The backside well is electrically connected to another voltage terminal for biasing the backside well at a second predetermined voltage that is different from the first predetermined voltage.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: John P. McCarten, Cristian A. Tivarus, Joseph R. Summa