Patents by Inventor Cristian Pantea

Cristian Pantea has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160356744
    Abstract: An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 8, 2016
    Applicant: Los Alamos National Security, LLC
    Inventors: Dipen N. Sinha, Cristian Pantea
  • Patent number: 9442094
    Abstract: An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 13, 2016
    Assignee: Los Alamos National Security, LLC
    Inventors: Dipen N. Sinha, Cristian Pantea
  • Patent number: 9354346
    Abstract: An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 31, 2016
    Assignees: LOS ALAMOS NATIONAL SECURITY, LLC, CHEVRON U.S.A. INC.
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea
  • Publication number: 20160041286
    Abstract: Methods for real-time, continuous measurements of the composition and other properties of individual phases of petroleum, water and gas mixtures during the oil production process, without requiring test separators, test lines, with associated valving and instrumentation, are described. Embodiments of the present invention direct ultrasonic sound transmission through a flowing multiphase fluid in three frequency ranges: low frequencies, gas bubble resonance frequencies, and high frequencies, wherein certain sound propagation measurements, including sound speed, sound attenuation and sound scattering, are made in one or more of the three separate frequency regions, from which the multiphase composition and other properties are extracted without having to separate the multiphase fluid or the gas from the flowing stream.
    Type: Application
    Filed: April 4, 2014
    Publication date: February 11, 2016
    Inventors: Dipen N. Sinha, Anirban Chaudhuri, Cristian Pantea
  • Publication number: 20160013871
    Abstract: A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.
    Type: Application
    Filed: April 6, 2015
    Publication date: January 14, 2016
    Inventors: Dipen N. Sinha, Cristian Pantea
  • Patent number: 9103944
    Abstract: A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 11, 2015
    Assignees: LOS ALAMOS NATIONAL SECURITY, LLC, CHEVRON U.S.A. INC.
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea
  • Publication number: 20140056110
    Abstract: An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 27, 2014
    Inventors: Cung Khac VU, Dipen N. SINHA, Cristian PANTEA
  • Publication number: 20140056101
    Abstract: A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 27, 2014
    Inventors: Cung Khac VU, Dipen N. SINHA, Cristian PANTEA
  • Publication number: 20140056111
    Abstract: An acoustic detector includes a cylindrical support member and a plurality of receiver elements that are disposed on a surface of the cylindrical support member. The plurality of receiver elements are configured to detect acoustic waves in a plurality of azimuthal angular directions.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 27, 2014
    Inventors: Cung Khac VU, Dipen N. SINHA, Cristian PANTEA
  • Publication number: 20140050046
    Abstract: The present invention is a method and an apparatus that can image objects immersed in optically opaque fluids using ultrasound in a confined space and in a harsh environment. If the fluid is not highly attenuating at frequencies above 1 MHz, where commercial ultrasound scanners are available, such scanners can be adapted for imaging in these fluids. In the case of highly attenuating fluids, such as drilling mud, then a low frequency collimated sound source is used.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Inventors: Dipen N. Sinha, Curtis F. Osterhoudt, Cristian Pantea
  • Patent number: 8559269
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 15, 2013
    Assignees: Chevron U.S.A., Inc., Los Alamos National Security LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Chirstopher Skelt
  • Patent number: 8547791
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 1, 2013
    Assignees: Chevron U.S.A. Inc., Los Alamos National Security LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Patent number: 8547790
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 1, 2013
    Assignees: Chevron U.S.A. Inc., Los Alamos National Security LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20130067992
    Abstract: An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
    Type: Application
    Filed: March 7, 2012
    Publication date: March 21, 2013
    Applicant: Los Alamos National Security, LLC
    Inventors: Dipen N. Sinha, Cristian Pantea
  • Patent number: 8259530
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: September 4, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Patent number: 8233349
    Abstract: In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 31, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20110096622
    Abstract: The present invention is a method and an apparatus that can image objects immersed in optically opaque fluids using ultrasound in a confined space and in a harsh environment. If the fluid is not highly attenuating at frequencies above 1 MHz, where commercial ultrasound scanners are available, such scanners can be adapted for imaging in these fluids. In the case of highly attenuating fluids, such as drilling mud, then a low frequency collimated sound source is used.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 28, 2011
    Inventors: Dipen N. Sinha, Cristian Pantea, Curtis F. Osterhoudt
  • Publication number: 20110080803
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.
    Type: Application
    Filed: June 3, 2010
    Publication date: April 7, 2011
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC, Los Alamos National Laboratory
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20110080805
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed.
    Type: Application
    Filed: June 3, 2010
    Publication date: April 7, 2011
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC, Los Alamos National Laboratory
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt
  • Publication number: 20110080804
    Abstract: In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.
    Type: Application
    Filed: June 3, 2010
    Publication date: April 7, 2011
    Applicants: Chevron U.S.A., Inc., Los Alamos National Security, LLC
    Inventors: Cung Khac Vu, Dipen N. Sinha, Cristian Pantea, Kurt T. Nihei, Denis P. Schmitt, Christopher Skelt