Patents by Inventor Cristian Vasile DIACONU

Cristian Vasile DIACONU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11169110
    Abstract: Embodiments relate generally to systems, devices, and methods for depositing an electrode and an electrolyte on a microelectromechanical system (MEMS) electrochemical sensor. A method may comprise providing a blade on a surface of a substrate; providing a ridge along the perimeter of the substrate; pressing the electrode and the electrolyte onto the blade and the ridge; cutting the electrode into multiple electrodes; positioning the electrolyte to contact the surface, the blade, and the ridge; and positioning the multiple electrodes to contact the surface, the blade, and the ridge.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: November 9, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Keith Francis Edwin Pratt, Cristian Vasile Diaconu, Yong-Fa Wang
  • Patent number: 10996190
    Abstract: Apparatus and associated methods relate to a micro-electro-mechanical system (MEMS) based gas sensor including an electrolyte contacting one or more top electrode(s) arranged on the bottom surface of a top semiconductor substrate (TSS), and one or more bottom electrode(s) arranged on the top of a bottom semiconductor substrate (BSS), the TSS and BSS joined with an adhesive seal around the electrolyte, the sensor including one or more capillaries providing gaseous communication to the electrolyte from an external ambient environment. The electrodes may be electrically accessed by one or more vias to externally accessible bond pads. In some examples, an electrical connection may be made from an additional bond pad on top of the TSS to the electrolyte. Various embodiments may reduce the size of various gas sensors to advantageously allow their inclusion into portable electronic devices.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: May 4, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Scott Edward Beck, Yong-Fa Wang, Robert Higashi, Philip Clayton Foster, Keith Francis Edwin Pratt, Cristian Vasile Diaconu
  • Patent number: 10895562
    Abstract: A method and apparatus are provided to determine the composition of one or more gases. In the context of a method, a sensory assembly and at least one processor, the sensor assembly comprising a first gas sensor and a second gas sensor, includes causing the first sensor to be powered to detect a presence of one or more gas while the second sensor is unpowered. The method further includes detecting the presence of one or more gases while the second sensor is unpowered. In response to detecting the presence of the one or more gases, the method includes causing the second sensor to be powered. The method still further includes capturing sensor data corresponding to at least one of the one or more gases. The method also includes identifying the at least one of the one or more gases based on an analysis of the sensor data.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: January 19, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Keith Francis Edwin Pratt, Tom Gurd, Cristian Vasile Diaconu, Martin Geoffrey Jones
  • Publication number: 20200116692
    Abstract: A method and apparatus are provided to determine the composition of one or more gases. In the context of a method, a sensory assembly and at least one processor, the sensor assembly comprising a first gas sensor and a second gas sensor, includes causing the first sensor to be powered to detect a presence of one or more gas while the second sensor is unpowered. The method further includes detecting the presence of one or more gases while the second sensor is unpowered. in response to detecting the presence of the one or more gases, the method includes causing the second sensor to be powered. The method still further includes capturing sensor data corresponding to at least one of the one or more gases. The method also includes identifying the at least one of the one or more gases based on an analysis of the sensor data.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Inventors: Keith Francis Edwin Pratt, Tom Gurd, Cristian Vasile Diaconu, Martin Geoffrey Jones
  • Publication number: 20190137440
    Abstract: Apparatus and associated methods relate to a micro-electro-mechanical system (MEMS) based gas sensor including an electrolyte contacting one or more top electrode(s) arranged on the bottom surface of a top semiconductor substrate (TSS), and one or more bottom electrode(s) arranged on the top of a bottom semiconductor substrate (BSS), the TSS and BSS joined with an adhesive seal around the electrolyte, the sensor including one or more capillaries providing gaseous communication to the electrolyte from an external ambient environment. The electrodes may be electrically accessed by one or more vias to externally accessible bond pads. In some examples, an electrical connection may be made from an additional bond pad on top of the TSS to the electrolyte. Various embodiments may reduce the size of various gas sensors to advantageously allow their inclusion into portable electronic devices.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 9, 2019
    Inventors: Scott Edward BECK, Yong-Fa WANG, Robert HIGASHI, Philip Clayton FOSTER, Keith Francis Edwin PRATT, Cristian Vasile DIACONU
  • Publication number: 20190128835
    Abstract: Embodiments relate generally to systems, devices, and methods for depositing an electrode and an electrolyte on a microelectromechanical system (MEMS) electrochemical sensor. A method may comprise providing a blade on a surface of a substrate; providing a ridge along the perimeter of the substrate; pressing the electrode and the electrolyte onto the blade and the ridge; cutting the electrode into multiple electrodes; positioning the electrolyte to contact the surface, the blade, and the ridge; and positioning the multiple electrodes to contact the surface, the blade, and the ridge.
    Type: Application
    Filed: October 30, 2018
    Publication date: May 2, 2019
    Inventors: Keith Francis Edwin PRATT, Cristian Vasile DIACONU, Yong-Fa WANG