Patents by Inventor Cristiano Benevento

Cristiano Benevento has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11031979
    Abstract: A transceiver apparatus for wireless communication includes components coupled to one another to form transmit chains for wireless communications. The components forming the transmit chains include power amplifiers (PA)s each coupled at a respective signal input to a corresponding one of the transmit chains for amplifying radio frequency (RF) signals of a wireless communication link and each power amplifier having a supply voltage input for powering the power amplifier, voltage sources having distinct voltage levels, and PA supply voltage detectors each coupled at an input to an associated one of the transmit chains to detect changes in an amplitude of the signal on each transmit chain. The transceiver apparatus includes a link power circuit coupled to the PA supply voltage detectors, the link power circuit to determine maximum voltage levels to be applied to the supply voltage inputs of the PAs.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: June 8, 2021
    Assignee: QUANTENNA COMMUNICATIONS, INC.
    Inventors: Leonardo Mitsuyuki, Kyle Zukowski, Cristiano Benevento, Didier Margairaz
  • Publication number: 20200136686
    Abstract: A transceiver apparatus for wireless communication includes components coupled to one another to form transmit chains for wireless communications. The components forming the transmit chains include power amplifiers (PA)s each coupled at a respective signal input to a corresponding one of the transmit chains for amplifying radio frequency (RF) signals of a wireless communication link and each power amplifier having a supply voltage input for powering the power amplifier, voltage sources having distinct voltage levels, and PA supply voltage detectors each coupled at an input to an associated one of the transmit chains to detect changes in an amplitude of the signal on each transmit chain. The transceiver apparatus includes a link power circuit coupled to the PA supply voltage detectors, the link power circuit to determine maximum voltage levels to be applied to the supply voltage inputs of the PAs.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Leonardo MITSUYUKI, Kyle ZUKOWSKI, Cristiano BENEVENTO, Didier MARGAIRAZ
  • Patent number: 10541733
    Abstract: A wireless transceiver including: antennas, components forming transmit and receive chains coupled to the antennas for MIMO communications, voltage sources, power amplifier supply voltage detectors and regulated switches. The components forming the transmit chains include power amplifiers (PA)s each coupled to a corresponding one of the transmit chains for amplifying RF signals of a MIMO communication link and each PA having a supply voltage input. The PA supply voltage detectors each couple to an associated one of the transmit chains to detect changes in an amplitude of the signal thereon and to identify required changes in the supply voltage level of the corresponding PA for transmission of the signal. The regulated switches couple the voltage sources and PAs, and are responsive to each PA's supply voltage detector to switchably couple the supply voltage input of each PA to the voltage sources providing the identified voltage levels during transmission.
    Type: Grant
    Filed: November 5, 2017
    Date of Patent: January 21, 2020
    Assignee: QUANTENNA COMMUNICATIONS, INC.
    Inventors: Leonardo Mitsuyuki, Kyle Zukowski, Cristiano Benevento, Didier Margairaz
  • Patent number: 8489044
    Abstract: In accordance with some embodiments of the present disclosure, a method may include generating a first current equal to a bandgap voltage divided by a resistance selected to approximately match a process resistance integral to a receiver. The method may further include generating a second current equal to temperature-dependent current multiplied by a predetermined scaling factor. The method may also include subtracting the second current from the first current to generate a bias current. The method may additionally include providing the bias current to the receiver.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 16, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Omid Oliaei, Stephen J. Rector, Cristiano Benevento
  • Publication number: 20130039394
    Abstract: In accordance with some embodiments of the present disclosure, a method may include generating a first current equal to a bandgap voltage divided by a resistance selected to approximately match a process resistance integral to a receiver. The method may further include generating a second current equal to temperature-dependent current multiplied by a predetermined scaling factor. The method may also include subtracting the second current from the first current to generate a bias current. The method may additionally include providing the bias current to the receiver.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Applicant: Fujitsu Semiconductor Limited
    Inventors: Omid Oliaei, Stephen J. Rector, Cristiano Benevento