Patents by Inventor Cristiano Dalvi

Cristiano Dalvi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250090057
    Abstract: An optical physiological sensor configured to perform high speed spectral sweep analysis of sample tissue being measured to non-invasively predict an analyte level of a patient. An emitter of the optical physiological sensor can be regulated to operate at different temperatures to emit radiation at different wavelengths. Variation in emitter drive current, duty cycle, and forward voltage can also be used to cause the emitter to emit a range of wavelengths. Informative spectral data can be obtained during the sweeping of specific wavelength regions of sample tissue.
    Type: Application
    Filed: October 16, 2024
    Publication date: March 20, 2025
    Inventors: Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Jeroen Poeze, Jesse Chen, Kevin Hughes Pauley, Mathew Paul, Sean Merritt, Thomas B. Blank, Massi Joe E. Kiani
  • Publication number: 20250072774
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: September 11, 2024
    Publication date: March 6, 2025
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20250064328
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Application
    Filed: September 9, 2024
    Publication date: February 27, 2025
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Publication number: 20250032711
    Abstract: A system which provides closed loop insulin administration is disclosed. The system includes redundant glucose sensors which may be interleaved in order to provide monitoring when one of the glucose sensors is in a settling period. The system may include a disease management unit which includes both a glucose sensor and an insulin pump. A closed loop disease management system which bases insulin administration on accurate glucose measurements may improve a patient's quality of life.
    Type: Application
    Filed: July 31, 2024
    Publication date: January 30, 2025
    Inventors: Massi Joe E. Kiani, Venkatramanan Krishnamani, Hung The Vo, Sai Kong Frank Lee, Kevin Hughes Pauley, Cristiano Dalvi, Jeroen Poeze, Jesse Chen, Gregory A. Olsen, Derek Treese
  • Publication number: 20240415426
    Abstract: Systems, methods, and apparatuses for enabling non-invasive, physiological sensors to obtain physiological measurements from a region of tissue of a patient are disclosed. Anchoring components can attach to patient tissue sites and sensor heads such that the tissue sites do not move during sensing. Interlocking mechanisms maintain tissue sites within a limited range of horizontal movement and vertical distance from the sensor head.
    Type: Application
    Filed: June 27, 2024
    Publication date: December 19, 2024
    Inventors: Hung The Vo, Cristiano Dalvi, Kevin Hughes Pauley
  • Publication number: 20240407677
    Abstract: A noninvasive physiological sensor can include a first body portion and a second body portion coupled to each other and configured to at least partially enclose a user's finger. The sensor can further include a first probe coupled to one or more emitters and a second probe coupled to a detector. The first probe can direct light emitted from the one or more emitters toward tissue of the user's finger and the second probe can direct light attenuated through the tissue to the detector. The first and second probes can be coupled to the first and second body portions such that when the first and second body portions are rotated with respect to one another, ends of the first and second probes can be moved in a direction towards one another to compress the tissue of the user's finger.
    Type: Application
    Filed: June 18, 2024
    Publication date: December 12, 2024
    Inventors: Hung The Vo, Kevin Hughes Pauley, Cristiano Dalvi, Sean Merritt, Jesse Chen, Jeroen Poeze, Ferdyan Lesmana, Ruiqi Long
  • Publication number: 20240410723
    Abstract: A double-bearing position encoder has an axle stabilized within a housing via two bearings disposed on opposite walls of the housing. The axle is in communications with a rotating cam. The cam actuates a pulser so as to generate an active pulse at a tissue site for analysis by an optical sensor. The axle rotates a slotted encoder wheel or a reflective encoder cylinder disposed within the housing so as to accurately determine the axle position and, hence, the active pulse frequency and phase.
    Type: Application
    Filed: April 17, 2024
    Publication date: December 12, 2024
    Inventor: Cristiano Dalvi
  • Patent number: 12150760
    Abstract: An optical physiological sensor configured to perform high speed spectral sweep analysis of sample tissue being measured to non-invasively predict an analyte level of a patient. An emitter of the optical physiological sensor can be regulated to operate at different temperatures to emit radiation at different wavelengths. Variation in emitter drive current, duty cycle, and forward voltage can also be used to cause the emitter to emit a range of wavelengths. Informative spectral data can be obtained during the sweeping of specific wavelength regions of sample tissue.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: November 26, 2024
    Assignee: Willow Laboratories, Inc.
    Inventors: Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Jeroen Poeze, Jesse Chen, Kevin Hughes Pauley, Mathew Paul, Sean Merritt, Thomas B. Blank, Massi Joe E. Kiani
  • Patent number: 12128213
    Abstract: A system which provides closed loop insulin administration is disclosed. The system includes redundant glucose sensors which may be interleaved in order to provide monitoring when one of the glucose sensors is in a settling period. The system may include a disease management unit which includes both a glucose sensor and an insulin pump. A closed loop disease management system which bases insulin administration on accurate glucose measurements may improve a patient's quality of life.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: October 29, 2024
    Assignee: Willow Laboratories, Inc.
    Inventors: Massi Joe E. Kiani, Venkatramanan Krishnamani, Hung The Vo, Sai Kong Frank Lee, Kevin Hughes Pauley, Cristiano Dalvi, Jeroen Poeze, Jesse Chen, Gregory A. Olsen, Derek Treese
  • Publication number: 20240350087
    Abstract: Systems and methods are disclosed for proximity sensing in physiological sensors, and more specifically to using one or more proximity sensors located on or within a physiological sensor to determine the positioning of the physiological sensor on a patient measurement site. Accurate placement of a physiological sensor on the patient measurement site is a key factor in obtaining reliable measurement of physiological parameters of the patient. Proper alignment between a measurement site and a sensor optical assembly provides more accurate physiological measurement data. This alignment can be determined based on data from a proximity sensor or sensors placed on or within the physiological sensor.
    Type: Application
    Filed: May 3, 2024
    Publication date: October 24, 2024
    Inventors: Thomas B. Blank, Gregory A. Olsen, Cristiano Dalvi, Hung T. Vo
  • Patent number: 12121333
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: October 22, 2024
    Assignee: Willow Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Publication number: 20240324910
    Abstract: Systems, methods, apparatuses, and medical devices for harmonizing data from a plurality of non-invasive sensors are described. A physiological parameter can be determined by harmonizing data between two or more different types of non-invasive physiological sensors interrogating the same or proximate measurement sites. Data from one or more first non-invasive sensors can be utilized to identify one or more variables that are useful in one or more calculations associated with data from one or more second non-invasive sensors. Data from one or more first non-invasive sensors can be utilized to calibrate one or more second non-invasive sensors. Non-invasive sensors can include, but are not limited to, an optical coherence tomography (OCT) sensor, a bio-impedance sensor, a tissue dielectric constant sensor, a plethysmograph sensor, or a Raman spectrometer.
    Type: Application
    Filed: April 23, 2024
    Publication date: October 3, 2024
    Inventors: Jesse Chen, Sean Merritt, Cristiano Dalvi, Ferdyan Lesmana, Hung The Vo, Kevin Hughes Pauley, Jeroen Poeze, Ruiqi Long, Stephen L. Monfre
  • Publication number: 20240293049
    Abstract: Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from the same tissue site. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus. The multi-sensor apparatus can orient the plurality of non-invasive, physiological sensors such that each of the plurality of non-invasive, physiological sensors obtains physiological data from the same or a similar location.
    Type: Application
    Filed: March 19, 2024
    Publication date: September 5, 2024
    Inventors: Cristiano Dalvi, Hung The Vo, Jeroen Poeze, Ferdyan Lesmana, Jesse Chen, Kevin Hughes Pauley, Ruiqi Long, Stephen Leonard Monfre, Sean Merritt, Mohamed K. Diab, Massi Joe E. Kiani
  • Publication number: 20240277240
    Abstract: A blood pressure measurement system is provided that includes an inflatable cuff, a valve assembly and chamber assembly. The chamber assembly can house a gas canister for providing gas to the inflatable cuff. The valve assembly can include a valve having a high pressure cavity, a low pressure cavity, and a channel providing a gas pathway between the high pressure cavity and the low pressure cavity. The valve assembly can further include a channel cover and spring in the high pressure cavity. The spring can exert a force on the channel cover to create a seal between the high pressure cavity and the channel. The valve assembly can further include a rod extending through the channel and exerting a force on the channel cover to create a gas pathway between the high pressure cavity and the channel.
    Type: Application
    Filed: February 29, 2024
    Publication date: August 22, 2024
    Inventors: Cristiano Dalvi, Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Hung The Vo
  • Patent number: 12064240
    Abstract: A noninvasive physiological sensor can include a first body portion and a second body portion coupled to each other and configured to at least partially enclose a user's finger. The sensor can further include a first probe coupled to one or more emitters and a second probe coupled to a detector. The first probe can direct light emitted from the one or more emitters toward tissue of the user's finger and the second probe can direct light attenuated through the tissue to the detector. The first and second probes can be coupled to the first and second body portions such that when the first and second body portions are rotated with respect to one another, ends of the first and second probes can be moved in a direction towards one another to compress the tissue of the user's finger.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: August 20, 2024
    Assignee: Willow Laboratories, Inc.
    Inventors: Hung The Vo, Kevin Hughes Pauley, Cristiano Dalvi, Sean Merritt, Jesse Chen, Jeroen Poeze, Ferdyan Lesmana, Ruiqi Long
  • Patent number: 12048534
    Abstract: Systems, methods, and apparatuses for enabling non-invasive, physiological sensors to obtain physiological measurements from a region of tissue of a patient are disclosed. Anchoring components can attach to patient tissue sites and sensor heads such that the tissue sites do not move during sensing. Interlocking mechanisms maintain tissue sites within a limited range of horizontal movement and vertical distance from the sensor head.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: July 30, 2024
    Assignee: Willow Laboratories, Inc.
    Inventors: Hung The Vo, Cristiano Dalvi, Kevin Hughes Pauley
  • Patent number: 12036009
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 7, 2024
    Date of Patent: July 16, 2024
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20240225461
    Abstract: A method of determining blood pressure measurements includes inflating a cuff, receiving an indication of pressure inside the cuff during inflation, determining a blood pressure based at least in part on the received indication, assigning a confidence level to the blood pressure, and determining whether the confidence level satisfies a threshold confidence level. Based at least on a determination that the confidence level satisfies a threshold confidence level, the method can include causing a display to display the blood pressure. Based at least on a determination that the confidence level does not satisfy a threshold confidence level, the method can include deflating the cuff, receiving an indication of pressure inside the cuff during deflation, determining another blood pressure, and causing a display to display a blood pressure.
    Type: Application
    Filed: January 22, 2024
    Publication date: July 11, 2024
    Inventors: Marcelo Lamego, Massi Joe E. Kiani, Ken Lam, Cristiano Dalvi, Hung The Vo
  • Publication number: 20240225540
    Abstract: An optical sensing module suitable for wearable devices, the optical sensing module comprising: a silicon or silicon nitride transmitter photonic integrated circuit (PIC), the transmitter PIC comprising: a plurality of lasers, each laser of the plurality of lasers operating at a wavelength that is different from the wavelength of the others; an optical manipulation region, the optical manipulation region comprising one or more of: an optical modulator, optical multiplexer (MUX); and additional optical manipulation elements; and one or more optical outputs for light originating from the plurality of lasers.
    Type: Application
    Filed: August 4, 2023
    Publication date: July 11, 2024
    Inventors: Aaron John ZILKIE, Hooman ABEDIASL, Cristiano DALVI, Jeffrey DRISCOLL, Alexander GONDARENKO, Richard GROTE, Haydn Frederick JONES, Sean MERRITT, Roozbeh PARSA, Philip PEREA, Andrew George RICKMAN, Adam SCOFIELD, Guomin YU
  • Publication number: 20240215843
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: March 7, 2024
    Publication date: July 4, 2024
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen