Patents by Inventor Crystal Elaine Owens

Crystal Elaine Owens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11698330
    Abstract: The present disclosure is directed to rheometric fixtures for making rheological measurements of yield stress fluids. In some embodiments, the fixture can be an improvement of a typical vane by having the ability to create a more homogeneous shear profile in a test material, e.g., a yield stress fluid. These vane fixtures having fractal-like cross-sectional structures enable robust rheological measurements of the properties of yield stress fluids due to several outer contact edges that lead to increased kinematic homogeneity at the point of yielding and beyond. The branching structure of the fractal-like fixtures can alter the shape of a wetted perimeter of the fixture while minimizing an area thereof to allow the fixture to be inserted into fluids with less disturbance. In some embodiments, a cup with a ribbed inner surface can be used to hold the sample fluid and disassembles for ease of cleaning following completion of the measurement.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: July 11, 2023
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Crystal Elaine Owens, Gareth H. McKinley, Anastasios John Hart
  • Publication number: 20210109003
    Abstract: The present disclosure is directed to rheometric fixtures for making rheological measurements of yield stress fluids. In some embodiments, the fixture can be an improvement of a typical vane by having the ability to create a more homogeneous shear profile in a test material, e.g., a yield stress fluid. These vane fixtures having fractal-like cross-sectional structures enable robust rheological measurements of the properties of yield stress fluids due to several outer contact edges that lead to increased kinematic homogeneity at the point of yielding and beyond. The branching structure of the fractal-like fixtures can alter the shape of a wetted perimeter of the fixture while minimizing an area thereof to allow the fixture to be inserted into fluids with less disturbance. In some embodiments, a cup with a ribbed inner surface can be used to hold the sample fluid and disassembles for ease of cleaning following completion of the measurement.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 15, 2021
    Inventors: Crystal Elaine Owens, Gareth H. McKinley, Anastasios John Hart
  • Publication number: 20200115228
    Abstract: The present disclosure is directed to tailoring the structure of freeform nanotube macrostructures through extrusion-based additive manufacturing for fabrication of planar and three-dimensional features and objects. Ink containing nanomaterials can be extruded into a fluid to precipitate into a fiber that can be used to form solid structures. The fluid can include a coagulant that promotes rapid solidification in the precipitation of fibers. The fluid can be disposed into a bath that is in fluid communication with the extruded ink. Systems and devices for executing such processes, are also provided.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 16, 2020
    Inventors: Crystal Elaine Owens, Gareth H. McKinley, Anastasios John Hart
  • Patent number: 10343159
    Abstract: The present disclosure is directed to the creation and/or manipulation of microfluidic systems and methods that can be formed in pre-existing modular blocks. Microfluidic paths can be formed in one or more blocks, and when multiple blocks are used, the blocks can be used together to form a path across the blocks. The paths can be sealed to prevent fluid leakage. The modular blocks can be readily available blocks which can then be individually customized to achieve various microfluidic design goals. The paths can be formed in outer surfaces of the blocks and/or disposed through a volume of the blocks. The modular blocks can have a uniform design across various block types, making it easy to reconfigure systems and/or remove and replace blocks and other components of the system. Methods for constructing such systems, and using such systems, are also provided.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 9, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Crystal Elaine Owens, Anastasios John Hart
  • Publication number: 20180078936
    Abstract: The present disclosure is directed to the creation and/or manipulation of microfluidic systems and methods that can be formed in pre-existing modular blocks. Microfluidic paths can be formed in one or more blocks, and when multiple blocks are used, the blocks can be used together to form a path across the blocks. The paths can be sealed to prevent fluid leakage. The modular blocks can be readily available blocks which can then be individually customized to achieve various microfluidic design goals. The paths can be formed in outer surfaces of the blocks and/or disposed through a volume of the blocks. The modular blocks can have a uniform design across various block types, making it easy to reconfigure systems and/or remove and replace blocks and other components of the system. Methods for constructing such systems, and using such systems, are also provided.
    Type: Application
    Filed: March 30, 2017
    Publication date: March 22, 2018
    Inventors: Crystal Elaine Owens, Anastasios John Hart