Patents by Inventor Cuihong Zhang

Cuihong Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230275673
    Abstract: Disclosed are a signal demodulation method and apparatus, a computer storage medium and a device. The method comprises: acquiring a signal to be demodulated; performing direct current blocking and bias processing on the signal to obtain a processed signal; comparing the processed signal with a preset decision signal, and obtaining a demodulation signal according to a comparison result. Thus, direct current blocking processing on a modulation signal can avoid dynamic changes of DC components caused by average power changes of carrier signals, avoiding wrongly demodulating the modulation signal. Bias processing after the direct current blocking on the modulation signal can further realize an AC signal decision without introducing a negative pressure source. A real-time decision on the processed signal via the preset decision signal can dynamically adapt the average power of carrier signals, thereby ensuring to correctly demodulate the modulation signal and improving the accuracy of demodulation results.
    Type: Application
    Filed: December 21, 2020
    Publication date: August 31, 2023
    Inventors: Zhi YANG, Cuihong ZHANG, Weidong MA
  • Publication number: 20230275657
    Abstract: Disclosed are an optical fiber time domain reflectometer (OTDR), a test system, test method, and a storage medium. The OTDR comprises: an input end for receiving an input service optical signal; a first filter connected with the input end and for filtering an interference signal with a wavelength equal to a test wavelength of the OTDR in the service optical signal; a wavelength division multiplexing WDM device having a reflection end, a transmission end and an output end; and an OTDR basic unit connected with the transmission end and used for emitting an OTDR signal equal to a test wavelength and receiving a return signal of the OTDR signal, wherein the output end of the WDM device is for outputting a filtered service optical signal received from the reflection end, outputting the OTDR signal received from the transmission end, and receiving the return signal returned from the optical fiber.
    Type: Application
    Filed: June 17, 2021
    Publication date: August 31, 2023
    Inventors: Cuihong ZHANG, Jiantao ZHANG, Zhijun YE, Tao XIONG
  • Patent number: 11251871
    Abstract: The present disclosure relates to a technical field of optical communication, and provides a method and an apparatus for determining maximum gain of Raman fiber amplifier. Wherein the method includes obtaining transmission performance parameters of a current optical fiber transmission line; respectively obtaining impact factors A1, A2, A4 according to a distance between a joint and a pump source, a fiber loss coefficient, and a fiber length included in the transmission performance parameters; calculating a joint loss value AttAeff according to a distance between a joint and a pump source, a fiber loss coefficient, and looking up impact factor A3 according to AttAeff; determining an actual maximum gain which may actually be achieved by the Raman fiber amplifier according to A1, A2, A3, A4.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 15, 2022
    Assignee: ACCELINK TECHNOLOGIES CO., LTD.
    Inventors: Chengpeng Fu, Jintao Tao, Menghui Le, Cuihong Zhang, Di Fang, Qinlian Bu, Chunpin Yu, Fei Liu, Peng Zhang
  • Patent number: 11239628
    Abstract: A method for realizing precise gain control for a hybrid fibre amplifier, and a hybrid fibre amplifier, in which by an erbium-doped fibre amplifier firstly outputting a constant power, a comparable source signal optical power is provided for a raman fibre amplifier of a next stage. A feedback for the gain control may be formed by comparing a source signal optical power calculated after starting pumping of the Raman fibre amplifier and a source signal optical power detected after pumping stops, thereby greatly improving gain control precision of the Raman fibre amplifier. Moreover, the erbium-doped fibre amplifier parts of all the hybrid fibre amplifiers may simultaneously output a constant optical power, and the Raman amplifier parts of all the hybrid fibre amplifiers may simultaneously start calibration, so that the time for starting operation of the entire system may be improved greatly.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: February 1, 2022
    Inventors: Jintao Tao, Chengpeng Fu, Cuihong Zhang, Fei Cai, Tao Xiong, Yunyu Jing, Qinlian Bu, Chunping Yu
  • Publication number: 20210344163
    Abstract: Disclosed are a method, device and system for dynamically controlling a gain of a Raman optical fiber amplifier. The method comprises: determining whether a target gain falls within a gain mask range; if the target gain falls within the gain mask range, directly locking a gain to the target gain; and if the target gain falls outside the gain mask range, locking the gain to a corresponding maximum gain in the gain mask range, and gradually increasing the locked gain according to a preset first step length until the target gain is reached or until at least one pump laser reaches a maximum output power. The invention enables an optical fiber amplifier to respond quickly to a change in an input optical signal, ensures gain stability, and ensures that no power overshoot or undershoot occurs in the non-switched optical channels in an optical path. Moreover, the invention minimizes an amount of time required to complete switching between gains.
    Type: Application
    Filed: December 26, 2018
    Publication date: November 4, 2021
    Applicant: Accelink Technologies Co., Ltd
    Inventors: Cuihong ZHANG, Chengpeng FU, Jintao TAO, Hao ZHANG, Lijing CHENG
  • Patent number: 11032002
    Abstract: The present disclosure relates to a signal processing system applied to remove OTDR noise, comprising: an analog-to-digital converter, a laser and driving unit, a sequence accumulator, a preprocessing counter, a pulse generator, a dual-port memory, a self-adaptive filter, an event decision device, and a preprocessing data decision device. The self-adaptive filter reads preprocessing data from a read-only port of the dual-port memory, and performs noise processing on the read preprocessing data by using a self-adaptive filtering method of wavelet transform. The event decision device performs an event decision on the filtered data output from the self-adaptive filter; The preprocessing data decision device decides whether a certain set of preprocessing data in m groups of preprocessing data is correct data or high-signal-to-noise data according to the difference of the m groups of preprocessing data after passing through the event decision device.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: June 8, 2021
    Inventors: Peng Zhang, Jiantao Zhang, Cuihong Zhang
  • Publication number: 20210083767
    Abstract: The present disclosure relates to a signal processing system applied to remove OTDR noise, comprising: an analog-to-digital converter, a laser and driving unit, a sequence accumulator, a preprocessing counter, a pulse generator, a dual-port memory, a self-adaptive filter, an event decision device, and a preprocessing data decision device. The self-adaptive filter reads preprocessing data from a read-only port of the dual-port memory, and performs noise processing on the read preprocessing data by using a self-adaptive filtering method of wavelet transform. The event decision device performs an event decision on the filtered data output from the self-adaptive filter; The preprocessing data decision device decides whether a certain set of preprocessing data in m groups of preprocessing data is correct data or high-signal-to-noise data according to the difference of the m groups of preprocessing data after passing through the event decision device.
    Type: Application
    Filed: December 25, 2017
    Publication date: March 18, 2021
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Peng Zhang, Jiantao Zhang, Cuihong Zhang
  • Patent number: 10725328
    Abstract: The present invention relates to a temperature-controlled dimming film with a function of shielding near-infrared light, which comprises a polymer network skeleton and liquid crystal molecules, wherein the polymer network skeleton consists of a polymer-dispersed liquid crystal network structure and a polymer-stabilized liquid crystal network structure and comprises a polymer matrix with pores inside which polymer networks are vertically aligned; and the liquid crystal molecules are dispersed in the polymer network skeleton and have smectic (SmA)-cholesteric (N*) phase transition. Between the skeleton and the liquid crystal molecules, nanoparticles, having absorption at 800-3000 nm, are dispersed. In the invention, a stepwise polymerization method is utilized to construct a PD&SLC network structure between two substrates, which greatly improve the bonding strength between the two substrates and the heat insulation performance of the temperature-controlled liquid crystal dimming film.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 28, 2020
    Assignee: PEKING UNIVERSITY
    Inventors: Huai Yang, Xiao Liang, Mei Chen, Shumeng Guo, Lanying Zhang, Cuihong Zhang, Qian Wang, Chenyue Li, Cheng Zou
  • Patent number: 10686525
    Abstract: Provided are a control method and system for a cascade hybrid amplifier, in which respective hybrid amplifiers in the cascade hybrid amplifier simultaneously start to implement a pump-starting process comprising: when the hybrid amplifier receives a request to start pumping, determining whether conditions are satisfied, if yes, determining stability of power of an input light of a Raman, starting pumping of an EDFA so that the EDFA enters into an APC operation mode; starting pumping of the Raman, and calculating a gain deviation according to the calculated input light powers before and after pump-starting of the Raman when no reflection alarm exists; and adjusting gain of the Raman according to the gain deviation, and switching to an AGC (automatic gain control) operation mode after the adjustment; and switching the EDFA to the AGC operation mode.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 16, 2020
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Yunyu Jing, Chengpeng Fu, Jintao Tao, Cuihong Zhang, Tao Xiong, Zhi Yang
  • Publication number: 20200007238
    Abstract: The present disclosure relates to a technical field of optical communication, and provides a method and an apparatus for determining maximum gain of Raman fiber amplifier. Wherein the method includes obtaining transmission performance parameters of a current optical fiber transmission line; respectively obtaining impact factors A1, A2, A4 according to a distance between a joint and a pump source, a fiber loss coefficient, and a fiber length included in the transmission performance parameters; calculating a joint loss value AttAeff according to a distance between a joint and a pump source, a fiber loss coefficient, and looking up impact factor A3 according to AttAeff; determining an actual maximum gain which may actually be achieved by the Raman fiber amplifier according to A1, A2, A3, A4.
    Type: Application
    Filed: December 18, 2018
    Publication date: January 2, 2020
    Applicant: ACCELINK TECHNOLOGIES CO., LTD.
    Inventors: Chengpeng Fu, Jintao Tao, Menghui Le, Cuihong Zhang, Di Fang, Qinlian Bu, Chunpin Yu, Fei Liu, Peng Zhang
  • Publication number: 20190310499
    Abstract: The present invention relates to a temperature-controlled dimming film with a function of shielding near-infrared light, which comprises a polymer network skeleton and liquid crystal molecules, wherein the polymer network skeleton consists of a polymer-dispersed liquid crystal network structure and a polymer-stabilized liquid crystal network structure and comprises a polymer matrix with pores inside which polymer networks are vertically aligned; and the liquid crystal molecules are dispersed in the polymer network skeleton and have smectic (SmA)-cholesteric (N*) phase transition. Between the skeleton and the liquid crystal molecules, nanoparticles, having absorption at 800-3000 nm, are dispersed. In the invention, a stepwise polymerization method is utilized to construct a PD&SLC network structure between two substrates, which greatly improve the bonding strength between the two substrates and the heat insulation performance of the temperature-controlled liquid crystal dimming film.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 10, 2019
    Applicant: PEKING UNIVERSITY
    Inventors: Huai YANG, Xiao LIANG, Mei CHEN, Shumeng GUO, Lanying ZHANG, Cuihong ZHANG, Qian WANG, Chenyue LI, Cheng ZOU
  • Patent number: 10439354
    Abstract: A cascade control system of an optical fiber amplifier includes a target setting parameter module, a primary controller, at least one controlled module and a secondary controller corresponding to the controlled module. The control system adopts two or more cascade control loops so that disturbance entering into the secondary loop can be overcome quickly, thereby the dynamic characteristics of the system may be improved. The primary controller aims to coarse adjustment and overall target control, and the secondary controller aims to fine adjustment and quick convergence of a short-term target, so that the control quality of the cascade control system may be further improved. The cascade control system may define the overall control target directly in the primary loop and avoid impact of aging characteristics of some special parameters on the application.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: October 8, 2019
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Peng Zhang, Chengpeng Fu, Chunping Yu, Jintao Tao, Cuihong Zhang
  • Publication number: 20190131758
    Abstract: A method for realizing precise gain control for a hybrid fibre amplifier, and a hybrid fibre amplifier, in which by an erbium-doped fibre amplifier firstly outputting a constant power, a comparable source signal optical power is provided for a raman fibre amplifier of a next stage. A feedback for the gain control may be formed by comparing a source signal optical power calculated after starting pumping of the Raman fibre amplifier and a source signal optical power detected after pumping stops, thereby greatly improving gain control precision of the Raman fibre amplifier. Moreover, the erbium-doped fibre amplifier parts of all the hybrid fibre amplifiers may simultaneously output a constant optical power, and the Raman amplifier parts of all the hybrid fibre amplifiers may simultaneously start calibration, so that the time for starting operation of the entire system may be improved greatly.
    Type: Application
    Filed: December 19, 2016
    Publication date: May 2, 2019
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Jintao Tao, Chengpeng Fu, Cuihong Zhang, Fei Cai, Tao Xiong, Yunyu Jing, Qinlian Bu, Chunping Yu
  • Publication number: 20180241473
    Abstract: Provided are a control method and system for a cascade hybrid amplifier, in which respective hybrid amplifiers in the cascade hybrid amplifier simultaneously start to implement a pump-starting process comprising: when the hybrid amplifier receives a request to start pumping, determining whether conditions are satisfied, if yes, determining stability of power of an input light of a Raman, starting pumping of an EDFA so that the EDFA enters into an APC operation mode; starting pumping of the Raman, and calculating a gain deviation according to the calculated input light powers before and after pump-starting of the Raman when no reflection alarm exists; and adjusting gain of the Raman according to the gain deviation, and switching to an AGC (automatic gain control) operation mode after the adjustment; and switching the EDFA to the AGC operation mode.
    Type: Application
    Filed: December 18, 2015
    Publication date: August 23, 2018
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Yunyu Jing, Chengpeng Fu, Jintao Tao, Cuihong Zhang, Tao Xiong, Zhi Yang
  • Publication number: 20170324210
    Abstract: A cascade control system of an optical fiber amplifier includes a target setting parameter module, a primary controller, at least one controlled module and a secondary controller corresponding to the controlled module. The control system adopts two or more cascade control loops so that disturbance entering into the secondary loop can be overcome quickly, thereby the dynamic characteristics of the system may be improved. The primary controller aims to coarse adjustment and overall target control, and the secondary controller aims to fine adjustment and quick convergence of a short-term target, so that the control quality of the cascade control system may be further improved. The cascade control system may define the overall control target directly in the primary loop and avoid impact of aging characteristics of some special parameters on the application.
    Type: Application
    Filed: December 26, 2014
    Publication date: November 9, 2017
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Peng Zhang, Chengpeng Fu, Chunping Yu, Jintao Tao, Cuihong Zhang
  • Patent number: 9722559
    Abstract: A hybrid fiber amplifier and method of adjusting gain and gain slope of thereof. The hybrid fiber amplifier comprises: RFA and EDFA that does not comprise variable optical attenuator. The RFA comprises pump signal combiner, pump laser group, out-of-band narrow-band filter, and photodetector. The EDFA comprises input coupler, erbium-doped fiber, output coupler, input photodetector, and output photodetector that are connected in sequence. The hybrid fiber amplifier also comprises control module that coordinates and controls EDFA and/or RFA to adjust gain and/or the gain slope based on desired amplification requirements. The EDFA and/or RFA can be coordinated and controlled by using the control module to achieve desired amplification effect. In addition, the EDFA does not comprise the variable optical attenuator, which avoids problems caused by the variable optical attenuator.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 1, 2017
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Chengpeng Fu, Cuihong Zhang, Tao Xiong, Menghui Le, Jintao Tao, Zhenyu Yu, Yunyu Jing, Qinlian Bu, Chunping Yu
  • Publication number: 20150214913
    Abstract: A hybrid fiber amplifier and method of adjusting gain and gain slope of thereof. The hybrid fiber amplifier comprises: RFA and EDFA that does not comprise variable optical attenuator. The RFA comprises pump signal combiner, pump laser group, out-of-band narrow-band filter, and photodetector. The EDFA comprises input coupler, erbium-doped fiber, output coupler, input photodetector, and output photodetector that are connected in sequence. The hybrid fiber amplifier also comprises control module that coordinates and controls EDFA and/or RFA to adjust gain and/or the gain slope based on desired amplification requirements. The EDFA and/or RFA can be coordinated and controlled by using the control module to achieve desired amplification effect. In addition, the EDFA does not comprise the variable optical attenuator, which avoids problems caused by the variable optical attenuator.
    Type: Application
    Filed: September 27, 2012
    Publication date: July 30, 2015
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Chengpeng Fu, Cuihong Zhang, Tao Xiong, Menghui Le, Jintao Tao, Zhenyu Yu, Yunyu Jing, Qinlian Bu, Chunping Yu
  • Patent number: 8797640
    Abstract: An embodiment of the present invention discloses a method of performing target Raman gain locking and a Raman fiber amplifier. The Raman fiber amplifier comprises a coupler (1) and a control unit (15), wherein the control unit comprises a target gain locking module. A detection circuit formed by filters and optical power detectors is connected between an output side of the coupler (1) and an input side of the control unit (15). Said method uses the control unit (15) to adjust power of the pump laser, making the detected out-of-band ASE power value reach target out-of-band ASE optical signal power value. Thus, the target amplification gain locking can be realized. Optical path according to embodiments of the present invention has a simple structure. The Raman gain can be configured flexibly according to line condition, and automatic control and locking of gain of the Raman fiber amplifier can be realized.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: August 5, 2014
    Assignee: Accelink Technologies Co., Ltd
    Inventors: Chengpeng Fu, Peng Zhang, Yi Jiang, Chunping Yu, Cuihong Zhang
  • Publication number: 20120327505
    Abstract: An embodiment of the present invention discloses a method of performing target Raman gain locking and a Raman fiber amplifier. The Raman fiber amplifier comprises a coupler (1) and a control unit (15), wherein the control unit comprises a target gain locking module. A detection circuit formed by filters and optical power detectors is connected between an output side of the coupler (1) and an input side of the control unit (15). Said method uses the control unit (15) to adjust power of the pump laser, making the detected out-of-band ASE power value reach target out-of-band ASE optical signal power value. Thus, the target amplification gain locking can be realized. Optical path according to embodiments of the present invention has a simple structure. The Raman gain can be configured flexibly according to line condition, and automatic control and locking of gain of the Raman fiber amplifier can be realized.
    Type: Application
    Filed: December 12, 2011
    Publication date: December 27, 2012
    Inventors: Chengpeng FU, Peng Zhang, Yi Jiang, Chunping Yu, Cuihong Zhang