Patents by Inventor Cuiling Gong

Cuiling Gong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10554152
    Abstract: A self-powered piezoelectric energy harvesting microsystem device has CMOS integrated circuit elements, contacts and interconnections formed at a proof mass portion of a die region of a semiconductor wafer. Piezoelectric energy harvesting unit components connected to the integrated circuit elements are formed at a thinned beam portion of the die region that connects the proof mass portion for vibration relative to a surrounding anchor frame portion. A battery provided on the proof mass portion connects to the integrated circuit elements. In a cantilever architectural example, the battery is advantageously located at a distal end of the proof mass portion, opposite the joinder with frame portion via the beam portion.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: February 4, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Cuiling Gong, Jianbai Jenn Wang
  • Patent number: 10436909
    Abstract: Embodiments relate to compressive line sensing imaging. Initially, a codebook is configured with a pattern sequence for a series of illumination patterns. Each light element in an individually addressable laser diode array (IALDA) is independently controlled to project the series of illumination patterns onto a target. Next, measurements of the target are acquired based on the series of illumination patterns. The codebook is then used to decode the measurements to create an image of the target.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: October 8, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bing Ouyang, Weilin Hou, Fraser Dalgleish, Cuiling Gong, Frank Caimi, Anni Dalgleish
  • Publication number: 20170299722
    Abstract: Embodiments relate to compressive line sensing imaging. Initially, a codebook is configured with a pattern sequence for a series of illumination patterns. Each light element in an individually addressable laser diode array (IALDA) is independently controlled to project the series of illumination patterns onto a target. Next, measurements of the target are acquired based on the series of illumination patterns. The codebook is then used to decode the measurements to create an image of the target.
    Type: Application
    Filed: October 31, 2016
    Publication date: October 19, 2017
    Inventors: Bing Ouyang, Weilin Hou, Fraser Dalgleish, Cuiling Gong, Frank Caimi, Anni Dalgleish
  • Publication number: 20170288576
    Abstract: A self-powered piezoelectric energy harvesting microsystem device has CMOS integrated circuit elements, contacts and interconnections formed at a proof mass portion of a die region of a semiconductor wafer. Piezoelectric energy harvesting unit components connected to the integrated circuit elements are formed at a thinned beam portion of the die region that connects the proof mass portion for vibration relative to a surrounding anchor frame portion. A battery provided on the proof mass portion connects to the integrated circuit elements. In a cantilever architectural example, the battery is advantageously located at a distal end of the proof mass portion, opposite the joinder with frame portion via the beam portion.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 5, 2017
    Inventors: Cuiling Gong, Jianbai Jenn Wang
  • Patent number: 9716446
    Abstract: A self-powered piezoelectric energy harvesting microsystem device has CMOS integrated circuit elements, contacts and interconnections formed at a proof mass portion of a die region of a semiconductor wafer. Piezoelectric energy harvesting unit components connected to the integrated circuit elements are formed at a thinned beam portion of the die region that connects the proof mass portion for vibration relative to a surrounding anchor frame portion. A battery provided on the proof mass portion connects to the integrated circuit elements. In a cantilever architectural example, the battery is advantageously located at a distal end of the proof mass portion, opposite the joinder with frame portion via the beam portion.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: July 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Cuiling Gong, Jianbai Jenn Wang
  • Patent number: 9711711
    Abstract: A piezoelectric energy harvester device has a cantilevered structure with a rectangular proof mass portion defined by holes through a substrate along three sides of a proof mass portion and supported by a thinned hinge portion for free pivotal movement relative to an anchor portion. Elongated strips of piezoelectric energy harvesting units are formed in side-by-side spaced positions on the hinge portion and aligned parallel or perpendicular to a stress direction. Multiplexing electronics coupled to contact pads on the anchor portion selectively connects different strip combinations to power management circuitry, responsive to variations in vibration magnitude or modes.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: July 18, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Hall, Jianbai Jenn Wang, Cuiling Gong
  • Patent number: 8975722
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 10, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: James N. Hall, Lance W. Barron, Cuiling Gong
  • Publication number: 20150015114
    Abstract: A piezoelectric energy harvester device has a cantilevered structure with a rectangular proof mass portion defined by holes through a substrate along three sides of a proof mass portion and supported by a thinned hinge portion for free pivotal movement relative to an anchor portion. Elongated strips of piezoelectric energy harvesting units are formed in side-by-side spaced positions on the hinge portion and aligned parallel or perpendicular to a stress direction. Multiplexing electronics coupled to contact pads on the anchor portion selectively connects different strip combinations to power management circuitry, responsive to variations in vibration magnitude or modes.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 15, 2015
    Inventors: James Hall, Jianbai Jenn Wang, Cuiling Gong
  • Publication number: 20150008792
    Abstract: A self-powered piezoelectric energy harvesting microsystem device has CMOS integrated circuit elements, contacts and interconnections formed at a proof mass portion of a die region of a semiconductor wafer. Piezoelectric energy harvesting unit components connected to the integrated circuit elements are formed at a thinned beam portion of the die region that connects the proof mass portion for vibration relative to a surrounding anchor frame portion. A battery provided on the proof mass portion connects to the integrated circuit elements. In a cantilever architectural example, the battery is advantageously located at a distal end of the proof mass portion, opposite the joinder with frame portion via the beam portion.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 8, 2015
    Inventors: Cuiling Gong, Jianbai Jenn Wang
  • Publication number: 20140252419
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James N. Hall, Lance W. Barron, Cuiling Gong
  • Patent number: 8729657
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: May 20, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: James N. Hall, Lance W. Barron, Cuiling Gong
  • Patent number: 7365898
    Abstract: A method of tilting a micromirror includes forming a substrate, a micromirror outwardly from the substrate, and at least one electrode inwardly from the micromirror. The method further includes applying, by the at least one electrode, electrostatic forces sufficient to pivot the micromirror about a pivot point. In addition, the method includes providing the at least one electrode with a sloped outer surface. The sloped outer surface has a first end and a second end. The second end is closer to the pivot point than the first end, and the first end is closer to the substrate than the second end. The method also includes providing at least a portion of the at least one electrode with material properties that at least partially contribute to the sloped profile of the sloped outer surface.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 29, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Cuiling Gong, Larry J. Hornbeck, Jason M. Neidrich
  • Publication number: 20080030841
    Abstract: A method of tilting a micromirror includes forming a substrate, a micromirror outwardly from the substrate, and at least one electrode inwardly from the micromirror. The method further includes applying, by the at least one electrode, electrostatic forces sufficient to pivot the micromirror about a pivot point. In addition, the method includes providing the at least one electrode with a sloped outer surface. The sloped outer surface has a first end and a second end. The second end is closer to the pivot point than the first end, and the first end is closer to the substrate than the second end. The method also includes providing at least a portion of the at least one electrode with material properties that at least partially contribute to the sloped profile of the sloped outer surface.
    Type: Application
    Filed: August 2, 2006
    Publication date: February 7, 2008
    Inventors: Cuiling Gong, Larry J. Hornbeck, Jason M. Neidrich
  • Patent number: 7199917
    Abstract: According to one embodiment of the present invention a micro-mirror element comprises a lower layer, a first middle layer, a second middle layer, and a micro-mirror. The lower layer includes an address portion for receiving an address voltage and a bias portion for receiving a bias voltage respectively. The first middle layer is electrically coupled to the bias portion of the lower layer. The second middle layer is electrically coupled to the first middle layer. The micro-mirror is coupled to the second middle layer and comprises a reflective surface operable to selectively tilt, in response to an application of a bias voltage and an address voltage to the lower layer, to reflect a beam of light.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: April 3, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Cuiling Gong, Rabah Mezenner
  • Patent number: 7139113
    Abstract: According to one embodiment of the present invention a micro-mirror element comprises a first address portion, a second address portion, and one or more address vias. The first address portion comprises a plurality of address pads distributed in a first layer of the micro-mirror element. The micro-mirror element has a first side and a second side and at least two of the plurality of address pads are distributed on the first side. The second address portion comprises a plurality of address electrodes distributed in a second layer of the micro-mirror element. The one or more address vias are operable to conductively couple the first address portion to the second address portion for the transfer of an address voltage from the first address portion to the second address portion.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: November 21, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Henry C. Chu, Cuiling Gong
  • Publication number: 20060245031
    Abstract: According to one embodiment of the present invention a micro-mirror element comprises a lower layer, a first middle layer, a second middle layer, and a micro-mirror. The lower layer includes an address portion for receiving an address voltage and a bias portion for receiving a bias voltage respectively. The first middle layer is electrically coupled to the bias portion of the lower layer. The second middle layer is electrically coupled to the first middle layer. The micro-mirror is coupled to the second middle layer and comprises a reflective surface operable to selectively tilt, in response to an application of a bias voltage and an address voltage to the lower layer, to reflect a beam of light.
    Type: Application
    Filed: April 18, 2005
    Publication date: November 2, 2006
    Inventors: Cuiling Gong, Rabah Mezenner
  • Publication number: 20060238530
    Abstract: According to one embodiment of the present invention a micro-mirror element comprises a lower layer, a middle layer, and a micro-mirror. The middle layer includes at least one hinge. The entire middle layer is operable to receive a bias charge. The micro-mirror is operable to receive the bias charge from the middle layer.
    Type: Application
    Filed: April 20, 2005
    Publication date: October 26, 2006
    Inventor: Cuiling Gong