Patents by Inventor Cung Do Tran

Cung Do Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9530684
    Abstract: Embodiments of the present invention provide structures and methods for heat suppression in finFET devices. Fins are formed in a semiconductor substrate. A graphene layer is formed on a lower portion of the sidewalls of the fins. A shallow trench isolation region is disposed on the structure and covers the graphene layer, while an upper portion of the fins protrudes from the shallow trench isolation region. The graphene layer may also be deposited on a top surface of the base semiconductor substrate. The graphene serves to conduct heat away from the fins more effectively than other dielectric materials.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Emre Alptekin, Viraj Yashawant Sardesai, Cung Do Tran, Reinaldo Ariel Vega
  • Publication number: 20160284586
    Abstract: Embodiments of the present invention provide structures and methods for heat suppression in finFET devices. Fins are formed in a semiconductor substrate. A graphene layer is formed on a lower portion of the sidewalls of the fins. A shallow trench isolation region is disposed on the structure and covers the graphene layer, while an upper portion of the fins protrudes from the shallow trench isolation region. The graphene layer may also be deposited on a top surface of the base semiconductor substrate. The graphene serves to conduct heat away from the fins more effectively than other dielectric materials.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Emre ALPTEKIN, Viraj Yashawant SARDESAI, Cung Do TRAN, Reinaldo Ariel VEGA
  • Patent number: 9368493
    Abstract: Embodiments of the present invention provide structures and methods for heat suppression in finFET devices. Fins are formed in a semiconductor substrate. A graphene layer is formed on a lower portion of the sidewalls of the fins. A shallow trench isolation region is disposed on the structure and covers the graphene layer, while an upper portion of the fins protrudes from the shallow trench isolation region. The graphene layer may also be deposited on a top surface of the base semiconductor substrate. The graphene serves to conduct heat away from the fins more effectively than other dielectric materials.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: June 14, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Emre Alptekin, Viraj Yashawant Sardesai, Cung Do Tran, Reinaldo Ariel Vega
  • Publication number: 20160013184
    Abstract: Embodiments of the present invention provide structures and methods for heat suppression in finFET devices. Fins are formed in a semiconductor substrate. A graphene layer is formed on a lower portion of the sidewalls of the fins. A shallow trench isolation region is disposed on the structure and covers the graphene layer, while an upper portion of the fins protrudes from the shallow trench isolation region. The graphene layer may also be deposited on a top surface of the base semiconductor substrate. The graphene serves to conduct heat away from the fins more effectively than other dielectric materials.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 14, 2016
    Inventors: Emre Alptekin, Viraj Yashawant Sardesai, Cung Do Tran, Reinaldo Ariel Vega
  • Patent number: 9059308
    Abstract: Embodiments of the present invention include a semiconductor structure including two transistor structures separated by a dummy gate of a different material and methods for forming said structure. Embodiments including forming sacrificial gates on a semiconductor substrate, forming spacers on the sacrificial gates, forming source/drain regions adjacent to two sacrificial gates separated by a third sacrificial gate, and replacing the third sacrificial gate with an insulating material. The insulating material replacing the third sacrificial gate may serve as a dummy gate to electrically isolate nearby source/drain regions. Embodiments further include forming sacrificial gates on a semiconductor substrate, forming spacers on the sacrificial gates, forming source/drain regions adjacent to two sacrificial gates separated by a third sacrificial gate, and replacing the two sacrificial gates with metal gates while leaving the third sacrificial gate in place to serve as a dummy gate.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Gregory Allen Northrop, Viraj Yashawant Sardesai, Cung Do Tran
  • Patent number: 8946081
    Abstract: Embodiments of the invention include a method of cleaning a semiconductor substrate of a device structure and a method of forming a silicide layer on a semiconductor substrate of a device structure. Embodiments include steps of converting a top portion of the substrate into an oxide layer and removing the oxide layer to expose a contaminant-free surface of the substrate.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Ahmet Serkan Ozcan, Viraj Yashawant Sardesai, Cung Do Tran
  • Publication number: 20140035045
    Abstract: Embodiments of the present invention include a semiconductor structure including two transistor structures separated by a dummy gate of a different material and methods for forming said structure. Embodiments including forming sacrificial gates on a semiconductor substrate, forming spacers on the sacrificial gates, forming source/drain regions adjacent to two sacrificial gates separated by a third sacrificial gate, and replacing the third sacrificial gate with an insulating material. The insulating material replacing the third sacrificial gate may serve as a dummy gate to electrically isolate nearby source/drain regions. Embodiments further include forming sacrificial gates on a semiconductor substrate, forming spacers on the sacrificial gates, forming source/drain regions adjacent to two sacrificial gates separated by a third sacrificial gate, and replacing the two sacrificial gates with metal gates while leaving the third sacrificial gate in place to serve as a dummy gate.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emre Alptekin, Gregory Allen Northrop, Viraj Yashawant Sardesai, Cung Do Tran
  • Publication number: 20130273737
    Abstract: Embodiments of the invention include a method of cleaning a semiconductor substrate of a device structure and a method of forming a silicide layer on a semiconductor substrate of a device structure. Embodiments include steps of converting a top portion of the substrate into an oxide layer and removing the oxide layer to expose a contaminant-free surface of the substrate.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emre Alptekin, Ahmet Serkan Ozcan, Viraj Yashawant Sardesai, Cung Do Tran
  • Patent number: 8415250
    Abstract: A structure and method for fabricating silicide contacts for semiconductor devices is provided. Specifically, the structure and method involves utilizing chemical vapor deposition (CVD) and annealing to form silicide contacts of different shapes, selectively on regions of a semiconductor field effect transistor (FET), such as on source and drain regions. The shape of silicide contacts is a critical factor that can be manipulated to reduce contact resistance. Thus, the structure and method provide silicide contacts of different shapes with low contact resistance, wherein the silicide contacts also mitigate leakage current to enhance the utility and performance of FETs in low power applications.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Dong-Ick Lee, Viraj Yashawant Sardesai, Cung Do Tran, Jian Yu, Reinaldo Ariel Vega, Rajasekhar Venigalla
  • Publication number: 20120273798
    Abstract: A structure and method for fabricating silicide contacts for semiconductor devices is provided. Specifically, the structure and method involves utilizing chemical vapor deposition (CVD) and annealing to form silicide contacts of different shapes, selectively on regions of a semiconductor field effect transistor (FET), such as on source and drain regions. The shape of silicide contacts is a critical factor that can be manipulated to reduce contact resistance. Thus, the structure and method provide silicide contacts of different shapes with low contact resistance, wherein the silicide contacts also mitigate leakage current to enhance the utility and performance of FETs in low power applications.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emre Alptekin, Dong-Ick Lee, Viraj Yashawant Sardesai, Cung Do Tran, Jian Yu, Reinaldo Ariel Vega, Rajasekhar Venigalla
  • Patent number: 8298934
    Abstract: The semiconductor structure is provided that has entirely self-aligned metallic contacts. The semiconductor structure includes at least one field effect transistor located on a surface of a semiconductor substrate. The at least one field effect transistor includes a gate conductor stack comprising a lower layer of polysilicon and an upper layer of a first metal semiconductor alloy, the gate conductor stack having sidewalls that include at least one spacer. The structure further includes a second metal semiconductor alloy layer located within the semiconductor substrate at a footprint of the at least one spacer.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Jeffery B. Maxson, Cung Do Tran, Huilong Zhu
  • Publication number: 20110237067
    Abstract: The semiconductor structure is provided that has entirely self-aligned metallic contacts. The semiconductor structure includes at least one field effect transistor located on a surface of a semiconductor substrate. The at least one field effect transistor includes a gate conductor stack comprising a lower layer of polysilicon and an upper layer of a first metal semiconductor alloy, the gate conductor stack having sidewalls that include at least one spacer. The structure further includes a second metal semiconductor alloy layer located within the semiconductor substrate at a footprint of the at least one spacer.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: International Business Machines Corporation
    Inventors: Jeffery B. Maxson, Cung Do Tran, Huilong Zhu
  • Patent number: 7964923
    Abstract: The semiconductor structure is provided that has entirely self-aligned metallic contacts. The semiconductor structure includes at least one field effect transistor located on a surface of a semiconductor substrate. The at least one field effect transistor includes a gate conductor stack comprising a lower layer of polysilicon and an upper layer of a first metal semiconductor alloy, the gate conductor stack having sidewalls that include at least one spacer. The structure further includes a second metal semiconductor alloy layer located within the semiconductor substrate at a footprint of the at least one spacer.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffery B. Maxson, Cung Do Tran, Huilong Zhu
  • Publication number: 20090174006
    Abstract: The semiconductor structure is provided that has entirely self-aligned metallic contacts. The semiconductor structure includes at least one field effect transistor located on a surface of a semiconductor substrate. The at least one field effect transistor includes a gate conductor stack comprising a lower layer of polysilicon and an upper layer of a first metal semiconductor alloy, the gate conductor stack having sidewalls that include at least one spacer. The structure further includes a second metal semiconductor alloy layer located within the semiconductor substrate at a footprint of the at least one spacer.
    Type: Application
    Filed: January 7, 2008
    Publication date: July 9, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffery B. Maxson, Cung Do Tran, Huilong Zhu