Patents by Inventor Curt A. Lavender

Curt A. Lavender has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200009626
    Abstract: Devices and methods for performing shear-assisted extrusion processes for forming extrusions of a desired composition from a feedstock material are provided. The processes can use a device having a scroll face having an inner diameter portion bounded by an outer diameter portion, and a member extending from the inner diameter portion beyond a surface of the outer diameter portion. Extrusion feedstocks and extrusion processes are provided for forming extrusions of a desired composition from a feedstock. The processes can include providing a feedstock having at least two different materials and engaging the materials with one another within a feedstock container. Methods for preparing metal sheets are provided that can include preparing a metal tube via shear assisted processing and extrusion; opening the metal tube to form a sheet having a first thickness; and rolling the sheet to a second thickness that is less than the first thickness.
    Type: Application
    Filed: September 5, 2019
    Publication date: January 9, 2020
    Applicant: Battelle Memorial Institute
    Inventors: Scott A. Whalen, Vineet V. Joshi, MD. Reza-E-Rabby, Jens T. Darsell, Mageshwari Komarasamy, Curt A. Lavender, Glenn J. Grant, Aashish Rohatgi, William E. Frazier, III
  • Publication number: 20180311713
    Abstract: A process for forming extruded products using a device having a scroll face configured to apply a rotational shearing force and an axial extrusion force to the same preselected location on material wherein a combination of the rotational shearing force and the axial extrusion force upon the same location cause a portion of the material to plasticize, flow and recombine in desired configurations. This process provides for a significant number of advantages and industrial applications, including but not limited to extruding tubes used for vehicle components with 50 to 100 percent greater ductility and energy absorption over conventional extrusion technologies, while dramatically reducing manufacturing costs.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 1, 2018
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Vineet V. Joshi, Scott A. Whalen, Curt A. Lavender, Glenn J. Grant, MD. Reza-E-Rabby, Aashish Rohatgi, Jens T. Darsell
  • Patent number: 10109418
    Abstract: A die tool and process are described that provide friction consolidation fabrication and friction consolidation extrusion fabrication products including permanent magnets, and other extrusion and non-extrusion structures. The present invention overcomes previous particle size, texture, homogeneity and density limitations in conventional metallurgy processes.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: October 23, 2018
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jun Cui, Glenn J. Grant, Saumyadeep Jana, Yuri Hovanski, Curt A. Lavender
  • Publication number: 20180250727
    Abstract: A shear assisted extrusion process for producing cladded materials wherein a cladding material and a material to be cladded are placed in sequence with the cladded material positioned to contact a rotating scroll face first and the material to be cladded second. The two materials are fed through a shear assisted extrusion device at a preselected feed rate and impacted by a rotating scroll face to generate a cladded extrusion product. This process allows for increased through wall strength and decreases the brittleness in formed structures as compared to the prior art.
    Type: Application
    Filed: February 17, 2018
    Publication date: September 6, 2018
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Vineet V. Joshi, Glenn J. Grant, Curt A. Lavender, Scott A. Whalen, Saumyadeep Jana, David Catalini, Jens T. Darsell
  • Publication number: 20180037975
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a soichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Patent number: 9802834
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: October 31, 2017
    Assignee: Battelle Memorial Institute
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Patent number: 9418779
    Abstract: A scalable process is detailed for forming bulk quantities of high-purity ?-MnBi phase materials suitable for fabrication of MnBi based permanent magnets.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 16, 2016
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jung Pyung Choi, Curt A. Lavender, Guosheng Li, Jun Cui
  • Patent number: 9283637
    Abstract: Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 15, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Glenn J. Grant, John G. Frye, Jin Yong Kim, Curt A. Lavender, Kenneth Scott Weil
  • Patent number: 9234626
    Abstract: A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 12, 2016
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Kevin L. Simmons, Kenneth I. Johnson, Curt A. Lavender, Norman L. Newhouse, Brian C. Yeggy
  • Publication number: 20150114975
    Abstract: A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 30, 2015
    Applicants: BATTELLE MEMORIAL INSTITUTE, HEXAGON TECHNOLOGY AS
    Inventors: Kevin L. Simmons, Kenneth I. Johnson, Curt A. Lavender, Norman L. Newhouse, Brian C. Yeggy
  • Publication number: 20150110664
    Abstract: A scalable process is detailed for forming bulk quantities of high-purity ?-MnBi phase materials suitable for fabrication of MnBi based permanent magnets.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jung Pyung Choi, Curt A. Lavender, Guosheng Li, Jun Cui
  • Publication number: 20140328959
    Abstract: A die tool and process are described that provide friction consolidation fabrication and friction consolidation extrusion fabrication products including permanent magnets, and other extrusion and non-extrusion structures. The present invention overcomes previous particle size, texture, homogeneity and density limitations in conventional metallurgy processes.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 6, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jun Cui, Glenn J. Grant, Saumyadeep Jana, Yuri Hovanski, Curt A. Lavender
  • Publication number: 20140328710
    Abstract: A die tool and process are described that provide friction consolidation fabrication and friction consolidation extrusion fabrication products including permanent magnets, and other extrusion and non-extrusion structures. The present invention overcomes previous particle size, texture, homogeneity and density limitations in conventional metallurgy processes.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 6, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jun Cui, Glenn J. Grant, Saumyadeep Jana, Yuri Hovanski, Curt A. Lavender
  • Patent number: 8596341
    Abstract: A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide separate flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporative heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: December 3, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. Tegrotenhuis, Paul H. Humble, Curt A. Lavender, Dustin D. Caldwell
  • Publication number: 20110194970
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a soichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 11, 2011
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Publication number: 20090321053
    Abstract: A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide separate flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporative heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
    Type: Application
    Filed: June 5, 2008
    Publication date: December 31, 2009
    Inventors: Ward E. Tegrotenhuis, Paul H. Humble, Curt A. Lavender, Dustin D. Caldwell