Patents by Inventor Curt Dundas

Curt Dundas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7462269
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: December 9, 2008
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Patent number: 7102763
    Abstract: A method and apparatus for processing a microelectronic workpiece using metrology. The apparatus can include one or more processing or transport units, a metrology unit, and a control unit coupled to the metrology unit and at least one of the processing or transport units. The control unit can modify a process recipe or a process sequence of the processing unit based on a feed forward or a feed back signal from the metrology unit. The control unit can also provide instructions to the transport unit to move the workpiece to a selected processing unit. The processing unit can include, inter alia, a seed layer deposition unit, a process layer electrochemical deposition unit, a seed layer enhancement unit, a chemical mechanical polishing unit, and/or an annealing chamber arranged for sequential processing of a workpiece. The processing units can be controlled as an integrated system using one or more metrology units, or a separate metrology unit can provide input to the processing units.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: September 5, 2006
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Brian Aegerter, Curt Dundas, Steven L. Peace
  • Publication number: 20060070638
    Abstract: A method for rinsing and drying a workpiece includes placing the workpiece into a chamber and spinning the workpiece. A rinsing fluid, such as water, is applied onto the workpiece through a first outlet in the chamber, with the rinsing fluid moving outwardly towards the edge of the workpiece via centrifugal force, to rinse the workpiece. A drying fluid, such as an alcohol vapor, is applied onto the workpiece through the first outlet, with the drying fluid moving outwardly towards the edge of the workpiece via centrifugal force, to dry the workpiece. The drying fluid advantageously follows a meniscus of the rinsing fluid across the workpiece surface. The rinsing fluid, or the drying fluid, or both fluids, may be applied near or at a central area of the workpiece.
    Type: Application
    Filed: December 2, 2005
    Publication date: April 6, 2006
    Inventors: Brian Aegerter, Curt Dundas, Tom Ritzdorf, Gary Curtis, Michael Jolley
  • Patent number: 7001471
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: February 21, 2006
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Patent number: 6994776
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: February 7, 2006
    Assignee: Semitool Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Publication number: 20050233589
    Abstract: In a process for removing etch residue, liquid including an acid and an oxidizer is applied to the back side and peripheral edge of a wafer. The front or device side of the wafer is left unprocessed, or may be exposed to an inert fluid such as a purge gas (e.g., nitrogen or helium), to a rinse such as deionized water, or to another processing fluid such as a more highly diluted etchant. The front side of the wafer is either left unprocessed, or is processed to a lesser degree without damage to the underlying devices, metal interconnects or semiconductor layers.
    Type: Application
    Filed: June 14, 2005
    Publication date: October 20, 2005
    Inventors: Brian Aegerter, Curt Dundas, Tom Ritzdorf, Gary Curtis, Michael Jolley
  • Publication number: 20050217707
    Abstract: A processing fluid is selectively applied or excluded from an outer peripheral margin of the front side, back side, or both sides of a workpiece. Exclusion and/or application of the processing fluid occurs by applying one or more processing fluids to the workpiece as the workpiece is spinning. The flow rate of the one or more processing fluids, fluid pressure, and/or spin rate are used to control the extent to which the processing fluid is selectively applied or excluded from the outer peripheral margin.
    Type: Application
    Filed: May 21, 2005
    Publication date: October 6, 2005
    Inventors: Brian Aegerter, Curt Dundas, Tom Ritzdorf, Gary Curtis, Michael Jolley
  • Publication number: 20050032391
    Abstract: An apparatus for processing a semiconductor wafer or similar article includes a reactor having a processing chamber formed by upper and lower rotors. The wafer is supported between the rotors. The rotors are rotated by a spin motor. A processing fluid is introduced onto the top or bottom surface of the wafer, or onto both surfaces, at a central location. The fluid flows outwardly uniformly and in all directions. A wafer support automatically lifts the wafer, so that it can be removed from the reactor by a robot, when the rotors separate from each other after processing.
    Type: Application
    Filed: September 14, 2004
    Publication date: February 10, 2005
    Inventors: Steven L. Peace, Gary Curtis, Raymon Thompson, Brian Aegerter, Curt Dundas
  • Publication number: 20050020001
    Abstract: In a process for treating a workpiece such as a semiconductor wafer, a processing fluid is selectively applied or excluded from an outer peripheral-margin of at least one of the front or back sides of the workpiece. Exclusion and/or application of the processing fluid occurs by applying one or more processing fluids to the workpiece while the workpiece and a reactor holding the workpiece are spinning. The flow rate of the processing fluids, fluid pressure, and/or spin rate are used to control the extent to which the processing fluid is selectively applied or excluded from the outer peripheral margin.
    Type: Application
    Filed: August 25, 2004
    Publication date: January 27, 2005
    Inventors: Brian Aegerter, Curt Dundas, Michael Jolley, Tom Ritzdorf, Steven Peace, Gary Curtis, Raymon Thompson
  • Publication number: 20030020928
    Abstract: A method and apparatus for processing a microelectronic workpiece using metrology. The apparatus can include one or more processing or transport units, a metrology unit, and a control unit coupled to the metrology unit and at least one of the processing or transport units. The control unit can modify a process recipe or a process sequence of the processing unit based on a feed forward or a feed back signal from the metrology unit. The control unit can also provide instructions to the transport unit to move the workpiece to a selected processing unit. The processing unit can include, inter alia, a seed layer deposition unit, a process layer electrochemical deposition unit, a seed layer enhancement unit, a chemical mechanical polishing unit, and/or an annealing chamber arranged for sequential processing of a workpiece. The processing units can be controlled as an integrated system using one or more metrology units, or a separate metrology unit can provide input to the processing units.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 30, 2003
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Brian Aegerter, Curt Dundas, Steven L. Peace
  • Patent number: 6508920
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: January 21, 2003
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Publication number: 20020074233
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Application
    Filed: June 20, 2001
    Publication date: June 20, 2002
    Applicant: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, Linlin Chen, Lyndon W. Graham, Curt Dundas
  • Publication number: 20020037641
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Application
    Filed: June 15, 2001
    Publication date: March 28, 2002
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Publication number: 20020000271
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Application
    Filed: August 31, 1999
    Publication date: January 3, 2002
    Applicant: SEMITOOL, INC.
    Inventors: THOMAS RITZDORF, E. HENRY STEVENS, LINLIN CHEN, LYNDON W. GRAHAM, CURT DUNDAS