Patents by Inventor Curtis A. Davis
Curtis A. Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12078748Abstract: A radar system includes an interference manager. The interference manager detects the presence and the characteristics of interfering radio signals used by other radar systems in proximity. The interference manager also controls the operating characteristics of the radar system in response to the detected interfering signal characteristics. The interference manager selects a time slot, or a frequency band, or a time slot and a frequency band to avoid or mitigate the interfering radio signals from other radar systems.Type: GrantFiled: January 13, 2021Date of Patent: September 3, 2024Assignee: Uhnder, Inc.Inventors: Ali Erdem Ertan, Murtaza Ali, Monier Maher, Aria Eshraghi, Curtis Davis
-
Publication number: 20240183941Abstract: A multi-chip MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the pluralities of transmitters and receivers are arranged across a plurality of circuit chips. The multi-chip MIMO radar system includes a central processor configured to receive data from the plurality of circuit chips. The plurality of circuit chips generates sets of selected range, Doppler, and virtual receiver data. The central processor is operable to process the sets of selected range, Doppler, and virtual receiver data to produce selected range detection and angular resolvability of targets.Type: ApplicationFiled: February 12, 2024Publication date: June 6, 2024Inventors: Monier Maher, Arunesh Roy, Murtaza Ali, Jean Pierre Bordes, Curtis Davis
-
Patent number: 11906620Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system includes transmitters configured to transmit radio signals, receivers configured to receive radar signals, and a control unit. The received radio signals include transmitted radio signals transmitted by the transmitters and reflected from objects in an environment. The control unit adaptively controls the transmitters and the receivers based on a selected operating mode for the radar system. The selected operating mode meets a desired operational objective defined by current environmental conditions. The control unit is configured to control the receivers to produce and process data according to the selected operating mode.Type: GrantFiled: August 6, 2021Date of Patent: February 20, 2024Assignee: Uhnder, Inc.Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
-
Patent number: 11899126Abstract: A multi-chip MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the pluralities of transmitters and receivers are arranged across a plurality of chips. The multi-chip MIMO radar system includes a central processor configured to receive data from the plurality of chips. The central processor is operable to combine the information from each radar chip to produce improved range detection and angular resolvability of targets.Type: GrantFiled: January 13, 2021Date of Patent: February 13, 2024Assignee: Uhnder, Inc.Inventors: Monier Maher, Arunesh Roy, Murtaza Ali, Jean Pierre Bordes, Curtis Davis
-
Patent number: 11867828Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.Type: GrantFiled: August 31, 2021Date of Patent: January 9, 2024Assignee: Uhnder, Inc.Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
-
Patent number: 11846696Abstract: A radar system including a transmitter configured for installation and use with the radar system and configured to transmit radio signals. The transmitted radio signals are defined by a spreading code. The radar system also includes a receiver configured for installation and use with the radar system and configured to receive radio signals that include transmitted radio signals transmitted by the transmitter and reflected from objects in an environment. The receiver is configured to convert the received radio signals into frequency domain received samples. The receiver is also configured to correlate the frequency domain received samples to detect object distance.Type: GrantFiled: February 2, 2021Date of Patent: December 19, 2023Assignee: Uhnder, Inc.Inventors: Raghunath K. Rao, Curtis Davis, Monier Maher, Steve Borho, Nikhilesh Bhagat, Jean P. Bordes
-
Patent number: 11821981Abstract: A method for operating a radar sensing system includes configuring a transmitter to transmit a radio signal. A receiver is configured to receive radio signals. The received radio signals include the transmitted radio signal transmitted by the transmitter and reflected from objects in the environment. The method includes with advanced temporal knowledge of the codes used to modulate the transmitted radio signal, using code values of the plurality of codes, and in combination with a bank of digital finite impulse response (FIR) filters, generating complementary signals of any self-interference noise. The method further includes subtracting the complementary signals at one or more points in the receiver prior to the interference desensing the receiver. The radar sensing system further includes a frequency modulated continuous wave (FMCW) interference canceller for detecting the largest interference signals and sequentially cancelling them while signal processing the received radio signals.Type: GrantFiled: March 28, 2023Date of Patent: November 21, 2023Assignee: UHNDER, INC.Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
-
Patent number: 11740323Abstract: A radar system includes a transmitter, a receiver, and a processor. The transmitter transmits continuous wave radio signals. The receiver receives radio signals that includes the transmitted radio signal reflected from targets in an environment. The targets include a first target and a second target. The first target is closer than a first threshold distance from the vehicle, and the second target is farther than the first threshold distance from the vehicle. A processor is configured to process the received radio signals. The processor is configured to selectively process the received radio signals to detect the second target. The processor selectably adjusts operational parameters of at least one of the transmitter and the receiver to discriminate between the first target and the second target.Type: GrantFiled: September 14, 2020Date of Patent: August 29, 2023Assignee: Uhnder, Inc.Inventors: Curtis Davis, Jean P. Bordes, Monier Maher, Wayne Stark, Raghunath K. Rao
-
Patent number: 11726172Abstract: A radar sensing system includes a plurality of transmitters configured to transmit radio signals and a plurality of receivers configured to receive radio signals. First and second transmitters of the plurality of transmitters are configured to generate radio signals defined by first and second spreading code chip sequences, respectively. A first receiver of the plurality of receivers processes received radio signals as defined by a plurality of spreading code chip sequences that includes at least the first and second spreading code chip sequences. The radar sensing system also includes a code generator for generating the spreading code chip sequences.Type: GrantFiled: March 2, 2021Date of Patent: August 15, 2023Assignee: Uhnder, IncInventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
-
Publication number: 20230243964Abstract: A method for operating a radar sensing system includes configuring a transmitter to transmit a radio signal. A receiver is configured to receive radio signals. The received radio signals include the transmitted radio signal transmitted by the transmitter and reflected from objects in the environment. The method includes with advanced temporal knowledge of the codes used to modulate the transmitted radio signal, using code values of the plurality of codes, and in combination with a bank of digital finite impulse response (FIR) filters, generating complementary signals of any self-interference noise. The method further includes subtracting the complementary signals at one or more points in the receiver prior to the interference desensing the receiver. The radar sensing system further includes a frequency modulated continuous wave (FMCW) interference canceller for detecting the largest interference signals and sequentially cancelling them while signal processing the received radio signals.Type: ApplicationFiled: March 28, 2023Publication date: August 3, 2023Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
-
Publication number: 20230137730Abstract: Devices, systems, and methods for installing a new roof that does not require penetration of the outward facing roof surface, conjoined panels secured with a securement bar provide an easily installed, durable, and non-penetrating surface covering for roofs.Type: ApplicationFiled: October 28, 2022Publication date: May 4, 2023Inventor: Curtis Davis
-
Patent number: 11614538Abstract: A radar sensing system including transmit antennas and receive antennas, transmitters, receivers, and a controller. The system further includes a transmit antenna switch selectively coupling each of the transmitters to a respective transmit antenna, and a receive antenna switch selectively coupling at least one receiver of the receivers to respective receive antennas. A quantity of receivers is different from a quantity of the receive antennas. The controller is operable to select a quantity of receivers to be coupled to receive antennas to realize a desired quantity of virtual receivers. The controller is operable to select an antenna pattern as defined by the selected quantity of receivers coupled to receive antennas.Type: GrantFiled: March 1, 2022Date of Patent: March 28, 2023Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
-
Publication number: 20230051731Abstract: A chip-implementation of a millimeter wave MIMO radar comprises transmitters for transmitting short bursts of digitally modulated radar carrier signals and receivers for receiving delayed echoes of those signals. Various signal formats defined by the number of bits per transmit burst, the transmit burst duration, the receive period duration, the bitrate, the number of range bins, and the number of bursts per scan, facilitate the choice of modulating bit patterns such that when correlating for target echoes over an entire scan, the correlation codes for different ranges and different transmitters are mutually orthogonal or nearly so as compared to a random selection of codes. In the event of imperfect orthogonality, the subtraction of strong already-detected target signals allows for better detecting of weaker signals or moving targets that are rendered non-orthogonal by their Doppler shift.Type: ApplicationFiled: October 17, 2022Publication date: February 16, 2023Inventors: Paul W. Dent, Curtis Davis, Murtaza Ali
-
Patent number: 11582305Abstract: A shared radar and communications system. The system includes a transmitter and a receiver. The transmitter modules signals based on a first spreading code defined at least in part by a first plurality of information bits. The first plurality of information bits encodes selected information. The transmitter transmits the modulated signals. The receiver receives a first signal and a second signal. The first signal includes the transmitted signals transmitted by the transmitter and reflected from objects in an environment. The receiver processes the first signal to detect objects in the environment. The second signal is transmitted from another system. The second signal carries a second plurality of information bits. The receiver processes the second signal to determine the second plurality of information bits. The second plurality of information bits are encoded with information selected by the other system.Type: GrantFiled: January 13, 2020Date of Patent: February 14, 2023Assignee: Uhnder, Inc.Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, Aria Eshraghi, Marius Goldenberg, Murtaza Ali
-
Publication number: 20220350020Abstract: A radar sensing system including transmit antennas and receive antennas, transmitters, receivers, and a controller. The system further includes a transmit antenna switch selectively coupling each of the transmitters to a respective transmit antenna, and a receive antenna switch selectively coupling at least one receiver of the receivers to respective receive antennas. A quantity of receivers is different from a quantity of the receive antennas. The controller is operable to select a quantity of receivers to be coupled to receive antennas to realize a desired quantity of virtual receivers. The controller is operable to select an antenna pattern as defined by the selected quantity of receivers coupled to receive antennas.Type: ApplicationFiled: March 1, 2022Publication date: November 3, 2022Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
-
Patent number: 11474225Abstract: A chip-implementation of a millimeter wave MIMO radar comprises transmitters for transmitting short bursts of digitally modulated radar carrier signals and receivers for receiving delayed echoes of those signals. Various signal formats defined by the number of bits per transmit burst, the transmit burst duration, the receive period duration, the bitrate, the number of range bins, and the number of bursts per scan, facilitate the choice of modulating bit patterns such that when correlating for target echoes over an entire scan, the correlation codes for different ranges and different transmitters are mutually orthogonal or nearly so. In the event of imperfect orthogonality, simple orthogonalization schemes are revealed, such as subtraction of strong already-detected target signals for better detecting weaker signals or moving targets that are rendered non-orthogonal by their Doppler shift.Type: GrantFiled: November 5, 2019Date of Patent: October 18, 2022Assignee: Uhnder, Inc.Inventors: Paul W. Dent, Curtis Davis, Murtaza Ali
-
Publication number: 20220326347Abstract: An exemplary radar sensing system utilizing a sparse array antenna structure provides an enhanced angular resolution to detect multiple targets with improved accuracy beyond the abilities of conventional radar. The exemplary radar system uses sparsely located antenna array elements allowing improved FOV, angular resolution, beam width, and side lobes using fewer physical antenna elements. Sparse antenna arrays allow the use of physically larger elements, larger separation between transmitter and receiver elements to reduce mutual coupling, and fewer elements to reduce necessary computations.Type: ApplicationFiled: January 24, 2022Publication date: October 13, 2022Inventors: Suleyman Gokhun Tanyer, Paul Dent, Murtaza Ali, Curtis Davis
-
Publication number: 20220308160Abstract: An automotive radar using combinations of the techniques of alternating transmit-receive bursts of digitally frequency modulated millimeter wave carriers; sparse MIMO antenna arrays with sidelobe-suppressive coarse and fine beamforming; frequency hopping; range-walking-compensated Doppler analysis and successive, and subtractive target detection in signal strength order.Type: ApplicationFiled: January 24, 2022Publication date: September 29, 2022Inventors: Paul W. Dent, Suleyman Gokhun Tanyer, Murtaza Ali, Frederick Rush, Monier Maher, Aria Eshraghi, Jean Pierre Bordes, Marius Goldenberg, Vasco Caldeira, Stephen William Alland, Curtis Davis
-
Patent number: 11454697Abstract: A radar includes transmitters, receivers, a memory, and a processor. The transmitters transmit radio signals, and the receivers receive reflected radio signals. The processor produces samples by correlating reflected radio signals with time-delayed replicas of transmitted radio signals. The processor stores this information as a first data structure, with information related to signals reflected from objects as a function of time (one dimension of the data structure) at various distances (a second dimension of the data structure) for various receivers (a third dimension of the data structure). The first data structure is processed to compute velocity and angle estimates, which are stored in second and third data structures, respectively. One or more memory optimizations are used to increase performance. Before storing the second and third data structures in a memory, the second and third data structures are sparsified to only include the outputs in specific regions of interest.Type: GrantFiled: December 14, 2020Date of Patent: September 27, 2022Assignee: Uhnder, Inc.Inventors: Monier Maher, Jean Pierre Bordes, Curtis Davis
-
Publication number: 20220291335Abstract: A radar system includes transmitters and receivers. The transmitters transmit radio signals. The receivers receive radio signals that include the transmitted radio signals reflected from objects in an environment. Each receiver has a controller, a buffer, and a post-buffer processor. The receiver processes the received radio signals and stored data samples in the buffer. The buffer operates in a plurality of modes defined by the controller. Modes of operation are selected for each of the respective buffers. Each buffer's mode of operation is selected to perform a desired processing on respective data samples. Each of the post-buffer processors receive their respective data samples from the respective buffers and performs further data processing on the respective data samples.Type: ApplicationFiled: May 23, 2022Publication date: September 15, 2022Inventors: Monier Maher, Curtis Davis, Frederick Rush, Aria Eshraghi