Patents by Inventor Curtis Krause

Curtis Krause has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8394154
    Abstract: A process for preparation of synthesis gas and/or hydrogen by counter-currently providing an oxidation reactant stream through an oxidation chamber and a reforming reactant stream through a steam reforming chamber is described. Also provided is a reactor for conducting the reaction.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: March 12, 2013
    Assignee: Texaco Inc.
    Inventors: Lixin You, Curtis Krause, Kevin Nguyen, Amanda Vincent
  • Publication number: 20070243436
    Abstract: A coolant subsystem for use in a fuel processor and a method for its operation are disclosed. In accordance with a first aspect, the coolant subsystem is separate from the feed to the processor reactor and is capable of circulating a coolant through the processor reactor. In accordance with a second aspect, the constituent elements of the fuel processor are housed in a cabinet, and the coolant subsystem is capable of cooling both the processor reactor and the interior of the cabinet. In various alternatives, the fuel processor can be employed to reform a fuel for a fuel cell power plant and/or may be used to provide thermal control for unrelated mechanical systems.
    Type: Application
    Filed: June 20, 2007
    Publication date: October 18, 2007
    Applicant: Texaco Inc.
    Inventors: Vijay Deshpande, W. Wheat, Curtis Krause, Ralph Worsley
  • Publication number: 20070186475
    Abstract: An apparatus for converting hydrocarbon fuel to a hydrogen rich gas including a first heat exchanger for heating the hydrocarbon fuel, a first desulfurization reactor for reacting a heated hydrocarbon fuel to produce a substantially desulfurized hydrocarbon fuel, a manifold for mixing the substantially desulfurized hydrocarbon fuel with an oxygen containing gas to produce a fuel mixture, a second heat exchanger for heating the fuel mixture, an autothermal reactor including a catalyst for reacting the heated fuel mixture to produce a first hydrogen containing gaseous mixture, a second desulfurization reactor for producing a second hydrogen containing gaseous mixture that is substantially desulfurized, a water gas shift reactor for reacting the second hydrogen containing gaseous mixture to produce a third hydrogen containing gaseous mixture with a substantially decreased carbon monoxide content, and a selective oxidation reactor for reacting the third hydrogen containing gaseous mixture to produce the hydrogen
    Type: Application
    Filed: April 25, 2007
    Publication date: August 16, 2007
    Applicant: Texaco Inc.
    Inventors: Vijay Deshpande, Curtis Krause
  • Patent number: 7226490
    Abstract: An apparatus for converting hydrocarbon fuel to a hydrogen rich gas including a first heat exchanger for heating the hydrocarbon fuel, a first desulfurization reactor for reacting a heated hydrocarbon fuel to produce a substantially desulfurized hydrocarbon fuel, a manifold for mixing the substantially desulfurized hydrocarbon fuel with an oxygen containing gas to produce a fuel mixture, a second heat exchanger for heating the fuel mixture, an autothermal reactor including a catalyst for reacting the heated fuel mixture to produce a first hydrogen containing gaseous mixture, a second desulfurization reactor for producing a second hydrogen containing gaseous mixture that is substantially desulfurized, a water gas shift reactor for reacting the second hydrogen containing gaseous mixture to produce a third hydrogen containing gaseous mixture with a substantially decreased carbon monoxide content, and a selective oxidation reactor for reacting the third hydrogen containing gaseous mixture to produce the hydrogen
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: June 5, 2007
    Assignee: Texaco, Inc.
    Inventors: Vijay A. Deshpande, Curtis Krause
  • Publication number: 20060254141
    Abstract: A multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of modules stacked end-to-end along a common axis. Each module includes a shell having an interior space defining a passageway for the flow of gas from a first end of the shell to a second end of the shell opposite the first end, and a processing core being contained within the interior space for effecting a chemical, thermal, or physical change to a gas stream passing axially through the module. The multi-step process includes: providing a fuel processor having a plurality of modules stacked end-to-end along a common axis; and feeding the hydrocarbon fuel successively through each of the modules in an axial direction through the tubular reactor to produce the hydrogen rich gas.
    Type: Application
    Filed: July 19, 2006
    Publication date: November 16, 2006
    Applicant: Texaco Inc.
    Inventors: Curtis Krause, James Wolfenbarger, Paul Martin
  • Publication number: 20060257302
    Abstract: A combustor for oxidizing a combustion fuel and pre-heating one or more reactants for fuel reforming. The combustor includes an elongated housing having an inlet for receiving a combustion fuel and an outlet for exhausting combustion products. The elongated housing further includes a cylindrical side wall, a bottom wall, and a top wall. Inert particles are disposed within the housing adjacent the inlet. A combustion catalyst bed is disposed within the housing above the inert particles that is a mixture of inert particles and combustion catalyst. The inert particles and the combustion catalyst preferably have a volumetric ratio of inert particles to catalyst between about 2:1 and about 4:1. The combustor has at least one heat exchanger within the combustion catalyst bed for heating a reformer reactant and generating steam. Preferably, the combustor includes at least two heat exchangers within the combustion catalyst bed, the heat exchanging elements have different surface areas.
    Type: Application
    Filed: July 17, 2006
    Publication date: November 16, 2006
    Applicant: Texaco Inc.
    Inventors: Vijay Deshpande, Curtis Krause, Paul Martin, Kevin Nguyen, James Stevens, William Wheat
  • Publication number: 20060225349
    Abstract: Relates to a process and apparatus that improves the hydrogen production efficiency for small scale hydrogen production. According to one aspect, the process provides heat exchangers that are thermally integrated with the reaction steps such that heat generated by exothermic reactions, combustion and water gas shift, are arranged closely to the endothermic reaction, steam reformation, and heat sinks, cool natural gas, water and air, to minimize heat loss and maximize heat recovery. Effectively, this thermally integrated process eliminates excess piping throughout, reducing initial capital cost.
    Type: Application
    Filed: March 29, 2005
    Publication date: October 12, 2006
    Inventors: Curtis Krause, Kevin Nguyen, Bhaskar Balasubramanian, Yunquan Liu
  • Publication number: 20060201064
    Abstract: A method for start-up and shut down of a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst is disclosed. Also disclosed are a computer programmed to start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst or a program storage medium encoded with instruction that, when executed by a computer, start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst.
    Type: Application
    Filed: May 11, 2006
    Publication date: September 14, 2006
    Applicant: Texaco Inc.
    Inventors: W. Wheat, Vesna Mirkovic, Kevin Nguyen, Curtis Krause, James Stevens, Daniel Casey
  • Publication number: 20060067863
    Abstract: An apparatus and method for the preferential oxidation of carbon monoxide in a hydrogen-rich fluid. The apparatus utilizes one or more reactors that are dimensioned to optimize the exothermic oxidation reaction and the transfer of heat to and from the catalyst bed. A reactor of the apparatus has an elongated cylindrical catalyst bed and heat transfer means adjacent the catalyst bed. The heat transfer means is suitable for pre-heating the catalyst bed during start-up operations and for removing the heat from the catalyst bed during the oxidation reaction. One or more reactors of different dimensions may be utilized depending upon the pressure of the hydrogen-rich fluid to be directed into the apparatus and the pressure requirements for the carbon monoxide-depleted fluid exiting the apparatus. For instance, in low pressure operations where it may be desirable to minimize the pressure drop across the apparatus, two or more reactors having relatively smaller dimensions can be utilized.
    Type: Application
    Filed: September 28, 2004
    Publication date: March 30, 2006
    Applicant: Texaco Inc.
    Inventors: W. Wheat, Daniel Casey, Curtis Krause, Marshall Wier, David Harrison,
  • Publication number: 20050143862
    Abstract: A method and apparatus for use in regenerating a reactor shift bed catalyst are disclosed. The method comprises monitoring the saturation level of a reactor shift bed catalyst in a reformer; automatically detecting that the reactor shift bed catalyst has entered a saturated state; and automatically regenerating the reactor shift bed catalyst in response to automatically detecting the saturated state. The apparatus may be, in various aspects, a program storage method encoded with instructions that, when executed by a computing device, performs such a method; a computing apparatus programmed to perform such a method, or a control system performing such a method.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 30, 2005
    Applicant: Texaco Inc.
    Inventors: Hongqiao Sun, Daniel Casey, Vesna Mirkovic, Bhaskar Balasubramanian, W. Wheat, Curtis Krause