Patents by Inventor Curtis Ling

Curtis Ling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10862702
    Abstract: Methods and systems are provided for power control in communications devices. Bonding of channels in communication devices may be dynamically adjusted, such as responsive to requests for bandwidth adjustment. For example, bonded channel configurations may be adjusted based on power, such as to single channel configurations (or to channel configurations with small number of channels, such as relative to current configurations) for low power operations. Components (or functions thereof) used in conjunction with receiving and/or processing bonded channels may be dynamically adjusted. Such dynamic adjustments may be performed, for example, such as to maintain required synchronization and system information to facilitate rapid data transfer resumption upon demand.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: December 8, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 10804604
    Abstract: A system comprises a plurality of antenna elements, a transmitter circuit, and first and second receiver circuits. The transmitter is operable to: transmit, via a first antenna element, a series of signals having a calibration component and each of the signals being generated with a different configuration of the transmitter circuit; and select a configuration for a future transmission based on a signal metric. The first receiver circuit is operable to: receive the signal via a second antenna element; and detect the calibration component in the signal to generate a first calibration signal. The second receiver circuit is operable to: receive the signal via a third antenna element; detect the calibration component in the signal to generate a second calibration signal; combine the first and second calibration signals to generate a combined calibration signal; and generate the signal metric based on the combined calibration signal.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: October 13, 2020
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10763957
    Abstract: Systems and methods are provided for supporting redundancy and outage resolution in coaxial networks with ideal taps.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: September 1, 2020
    Assignee: MaxLinear, Inc.
    Inventors: Steven J. Krapp, Sridhar Ramesh, Curtis Ling, Leonard Dauphinee, Kenneth S. Walley
  • Patent number: 10705209
    Abstract: A radar transmitter comprises orthogonal frequency division multiplexing (OFDM) symbol generation circuitry, windowing circuitry, and control circuitry. The OFDM symbol generation circuitry is operable to modulate data onto a plurality of subcarriers to generate a plurality of OFDM symbols. The windowing circuitry is configurable to support a plurality of windowing functions. The control circuitry is operable to analyze returns from a previous transmission of the radar transmitter to determine characteristics of the environment into which the previous transmission was transmitted. The control circuitry is operable to select which one of the plurality of windowing functions the windowing circuitry is to apply to each of the plurality of OFDM symbols based on the characteristics of the environment. A first one of the windowing functions may correspond to a first radiation pattern and the second one of the windowing functions may correspond to a second radiation pattern.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 7, 2020
    Assignee: MAXLINEAR, INC.
    Inventor: Curtis Ling
  • Patent number: 10693695
    Abstract: A transmitter comprises a first peak-to-average-power ratio (PAPR) suppression circuit and a second peak-to-average-power ratio (PAPR) suppression circuit. The first PAPR suppression circuit may receive a first sequence of time-domain symbols to be transmitted, alter the first sequence based on each of a plurality of symbol ordering and/or inversion descriptors to generate a corresponding plurality of second sequences of time-domain symbols, measure a PAPR corresponding to each of the second sequences, select one of the plurality of symbol ordering and/or inversion descriptors based on the measurement of PAPR, and convey the selected one of the symbol ordering and/or inversion descriptors to the second PAPR suppression circuit. The second PAPR suppression circuit may receive the first sequence of time-domain symbols to be transmitted, and alter the first sequence based on the selected one of the symbol ordering and/or inversion descriptors to generate a reordered and/or inverted symbol sequence.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 23, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Tim Gallagher, Elad Shaked
  • Publication number: 20200191949
    Abstract: A first multifunction radar transceiver comprises a first transmitter and a first receiver. The transmitter is operable to transmit a first radar burst. The receiver is operable to receive reflections of the first radar burst and reflections of a second radar burst transmitted by a second multifunction radar transceiver. The receiver is operable to generate, based on characteristics of the received reflections of the first radar burst and the received reflections of the second radar burst, a first scene representation. The receiver is operable demodulate the second radar burst to recover a second scene representation. The receiver is operable to combine the first scene representation and the second scene representation to generate a composite scene representation.
    Type: Application
    Filed: June 18, 2019
    Publication date: June 18, 2020
    Inventors: Curtis Ling, Stefan Szasz
  • Publication number: 20200177951
    Abstract: Methods and systems for providing a home cable network may comprise, for example, in a premises-based wired network (network), receiving by a root node network controller (NC), signals that conform to first protocols, where the signals may be received from sources external to the premises. The received signals may be bridged to conform to a second communications protocol and communicated to one or more networked devices comprising a television set top box downstream from the root node device where, for example, only signals conforming to the second communications protocol may be communicated. The first protocol signals may comprise data over cable service interface specification (DOCSIS), cable television, satellite television, fiber-to-the-home, and/or digital subscriber (DSL) signals. The second communications protocol may, for example, comprise a multimedia over cable alliance (MoCA) standard.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: Curtis Ling, Timothy Gallagher
  • Publication number: 20200158846
    Abstract: A multifunctional radar transmitter may comprise bus interface circuitry and beamforming circuitry. The beamforming circuitry, with use of a plurality of beamforming coefficients, is operable to process a plurality of baseband signals to generate a millimeter wave radar burst corresponding to a radiation pattern that comprises a first lobe and a second lobe, where the first lobe is at a first angle and the second lobe is at a second angle. The bus interface circuitry is operable to receive, from a first receiver, an indication of interference from the second lobe present at the first receiver. The beamforming circuitry is operable to adjust, based on the indication of interference, the beamforming coefficients such that the second lobe is redirected to a third angle.
    Type: Application
    Filed: June 4, 2019
    Publication date: May 21, 2020
    Inventor: Curtis Ling
  • Publication number: 20200162781
    Abstract: A wideband receiver system comprises a wideband analog-to-digital converter (ADC) module and a digital frontend (DFE) module. The wideband ADC is configured to concurrently digitize a band of frequencies comprising a plurality of desired channels and a plurality of undesired channels. The DFE module is coupled to the digital in-phase and quadrature signals. The DFE module is configured to select the plurality of desired channels from the digitized band of frequencies, and generate an intermediate frequency (IF) signal comprising the selected plurality of desired channels and having a bandwidth that is less than a bandwidth of the band of frequencies, where the generation comprises frequency shifting of the selected plurality of desired channels. The IF signal may be a digital signal and the DFE is configured to output the IF signal via a serial or parallel interface.
    Type: Application
    Filed: June 4, 2019
    Publication date: May 21, 2020
    Inventors: Madhukar Reddy, Curtis Ling, Tim Gallagher
  • Patent number: 10658763
    Abstract: An array based communications system may comprise a plurality of element processors. Each element processor may comprise a combining circuit, a crest factor circuit, and a phase shifter circuit. The combining circuit may produce a weighted sum of a plurality of digital datastreams. The crest factor circuit may be operable to determine whether the weighted sum has a power above or below a power threshold. If the power is above the power threshold, the crest factor circuit is operable to reduce the power. If the power is below the power threshold, the crest factor circuit is operable to increase the power. The phase shifter circuit may introduce a phase shift to out-of-band components of the weighted sum according to the power increase or the power decrease by the crest factor circuit.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: May 19, 2020
    Assignee: Maxlinear, Inc.
    Inventors: Timothy Gallagher, Curtis Ling
  • Publication number: 20200153466
    Abstract: A first microwave backhaul assembly comprises a first antenna, a front-end circuit, an inter-backhaul-assembly interface circuit, and an interference cancellation circuit. The first antenna is operable to receive a first microwave signal. The front-end circuit is operable to convert the first microwave signal to a lower-frequency digital signal, wherein the lower-frequency digital signal has energy of a second microwave signal and energy of a third microwave signal. The inter-backhaul-assembly interface circuit is operable to receive information from a second microwave backhaul assembly. The interference cancellation circuit is operable to use the information received via the inter-backhaul-assembly interface circuit during processing of the lower-frequency digital signal to remove, from the first microwave signal, the energy of the third microwave signal. The information received via the inter-backhaul-assembly interface may comprise a signal having energy of the second microwave signal.
    Type: Application
    Filed: May 28, 2019
    Publication date: May 14, 2020
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Publication number: 20200150255
    Abstract: A multifunctional radar transmitter may comprise bus interface circuitry and beamforming circuitry. The beamforming circuitry, with use of a plurality of beamforming coefficients, is operable to process a plurality of baseband signals to generate a millimeter wave radar burst corresponding to a radiation pattern that comprises a first lobe and a second lobe, where the first lobe is at a first angle and the second lobe is at a second angle. The bus interface circuitry is operable to receive, from a first receiver, an indication of interference from the second lobe present at the first receiver. The beamforming circuitry is operable to adjust, based on the indication of interference, the beamforming coefficients such that the second lobe is redirected to a third angle.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventor: Curtis Ling
  • Patent number: 10645653
    Abstract: Methods and systems for providing reduced bandwidth acquisition latency may comprise communicating a reservation request for bandwidth allocation for devices operating under a wired network protocol, where the reservation request may be sent by wired network devices via a wireless network protocol over a wireless network. Bandwidth may be allocated in the wired network for the requesting devices by a network controller. Data may be communicated with the requesting devices via the wired network. The wired network communication protocol may comprise a multimedia over cable alliance (MoCA) standard. The wireless protocol may comprise an IEEE 802.11x standard, a Bluetooth standard, and/or any non-public network protocol. The communication of the reservation request via the wireless protocol may decrease a latency of the wired network. A medium access plan (MAP) may be generated by the network controller based on the reservation request and may comprise a bandwidth allocation for the requesting devices.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: May 5, 2020
    Assignee: Maxlinear, Inc.
    Inventors: James Qiu, Sridhar Ramesh, Sheng Ye, Curtis Ling
  • Publication number: 20200136637
    Abstract: Methods and systems for ripple suppression in multi-phase buck converters may comprise a buck converter for providing an output DC voltage with controlled ripple current. The buck converter may include one or more main buck converter stages with coupled outputs and one or more harmonic suppression buck converter stages in parallel with the one or more main buck converter stages. The one or more suppression buck converter stages may provide suppression currents at the coupled outputs to cancel ripple currents generated in the one or main buck converter stages. Each of the one or more main buck converter stages and each of the one or more suppression buck converter stages may include a stacked transistor pair with an inductor at an output. A drain terminal of one transistor of each transistor pair in the one or more main buck converter stages may be biased at a first supply voltage.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 30, 2020
    Inventors: Curtis Ling, Shantha Murthy Prem Swaroop, Vinit Jayaraj
  • Publication number: 20200127732
    Abstract: Systems and methods are provided for supporting redundancy and outage resolution in coaxial networks with ideal taps.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 23, 2020
    Inventors: Steven J. Krapp, Sridhar Ramesh, Curtis Ling, Leonard Dauphinee, Kenneth S. Walley
  • Publication number: 20200120468
    Abstract: A wireless communication device (WCD) establishes an ad-hoc communication link with a second WCD within operating range. A replica of at least a portion of a display of the first WCD may be shared with the second WCD utilizing wireless broadband signals that are communicated via the established one or more ad-hoc communication links. The first WCD and the second WCD are operable to communicate the wireless broadband signals at a power level that is below a spurious emissions mask. The transmitted wireless broadband signals are spread so they occupy a designated frequency spectrum band. The shared replica of at least a portion of the display of the first WCD includes one or more applications, text, video and/or data content. A user of the first WCD may interact with content that is displayed on a display of the second WCD and vice-versa.
    Type: Application
    Filed: April 23, 2019
    Publication date: April 16, 2020
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 10613220
    Abstract: In accordance with an example implementation of this disclosure, a multifunction radar transceiver comprises a transmitter and a receiver. The transmitter is operable to modulate data onto a first radar burst, beamform the first radar burst, and transmit the first radar burst via a plurality of antenna elements. The receiver is operable to receive a reflection of the first radar burst, perform beamforming of the reflection of the first radar burst, demodulate the first radar burst to recover the data modulated on the first radar burst, and determine characteristics of an object off of which the first radar burst reflected based on characteristics of the reflection of the first radar burst.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: April 7, 2020
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10613221
    Abstract: First transmitter circuitry communicates, via bus interface circuitry, on a data bus to detect whether any second transmitter circuitry is coupled to the data bus. In instances that no second transmitter circuitry is detected as being coupled to the data bus, the first transmitter circuitry transmits beamformed signals via a first plurality of antenna elements using beamforming coefficients. In instances that second transmitter circuitry is detected as being coupled to the data bus, the first transmitter circuitry determines a phase offset between clock generation circuitry of the first transmitter circuitry and clock generation circuitry of the detected second transmitter circuitry. The first transmitter circuitry compensates the beamforming coefficients based on the determined phase offset. The first transmitter circuitry use the compensated beamforming coefficients for transmitting signals that are phase coherent with signals transmitted by the second transmitter circuitry.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: April 7, 2020
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10601668
    Abstract: Methods and systems are provided for adaptive management of local networks, such as in-premises networks, which may have access to and/or may be connected to external networks, such cable or satellite networks. A network management device that manages a local network may receive from a client device in the local network, a communication request relating to communication within the local network, may process the communication request, and may configure the communication of the client device based on processing of the communication request. The processing of the communication request may include assessing effects of communication of the client device, at the network management device, on other connections and/or communications, with the other connections and/or communications including external connections and/or communications with one or more devices and/or networks external to the local network.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: March 24, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Sridhar Ramesh, Curtis Ling, Glenn Chang
  • Patent number: 10598781
    Abstract: A system comprises a multifunction radar receiver that in turn comprises processing circuitry and front-end circuitry. The front-end circuitry is operable to receive a millimeter wave burst via a plurality of antennas to generate a plurality received signals. The processing circuitry is operable to receive a first scene representation that is an aggregate of scene representations generated by one or more other radar receivers. The processing circuitry is operable to process the received signals to generate a second scene representation. The processing circuitry is operable to compare the first scene representation and the second scene representation and generate a difference scene based on the comparison. The processing circuitry is operable to generate a control signal based on the difference scene.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: March 24, 2020
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling