Patents by Inventor Curtis Lockshin

Curtis Lockshin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220105190
    Abstract: Novel proteins and compounds conjugated with polysialic acid (PSA) are provided herein. Also provided are methods of using these compounds and methods of treatment of various diseases and disorders. The novel compounds provided herein have improved pharmacodynamic and/or pharmacokinetic properties, improved effectiveness, and other desirable properties.
    Type: Application
    Filed: February 4, 2020
    Publication date: April 7, 2022
    Applicant: Lipoxen Technologies Limited
    Inventor: Curtis LOCKSHIN
  • Publication number: 20220023430
    Abstract: A composition comprising a population of polysaccharide-blinatumomab conjugates, wherein the polysaccharide is covalently linked to the blinatumomab. A method of increasing the efficacy of a therapeutic agent in the treatment of B-cell precursor acute lymphoblastic leukemia (ALL), wherein the therapeutic agent is a PSA-drug conjugate, wherein the conjugate comprises PSA covalently linked to blinatumomab, and wherein the PSA of the conjugate binds to DNA and histones of NET extracellular fibrils.
    Type: Application
    Filed: November 13, 2019
    Publication date: January 27, 2022
    Applicant: Lipoxen Technologies Limited
    Inventors: Anton Igonin, Dmitry Genkin, Curtis Lockshin
  • Patent number: 7671087
    Abstract: One aspect of the present invention relates to amines. A second aspect of the present invention relates to the use of the amines as inhibitors of a mammalian anandamide transporter. The compounds of the present invention will also find use in the treatment of numerous ailments, conditions and diseases which afflict mammals, including but not limited to asthma, neuropathic pain, persistent pain, inflammatory pain, hyperactivity, hypertension, brain ischemia, Parkinson's disease, spasticity, Tourette's syndrome, schizophrenia, hemorrhagic shock, septic shock, cardiac shock, migrane, Horton's headache, multiple sclerosis, anorexia, AIDS wasting syndrome, organ rejection, autoimmune diseases, allergy, arthritis, Crohn's disease, malignant gliomas, neurodegenerative diseases, Huntington's chorea, glaucoma, nausea, anxiety, psychosis, attention deficit hyperactivity disorder, premature ejaculation, and stroke.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: March 2, 2010
    Assignee: Sepracor Inc.
    Inventors: Brian M. Aquila, Seth C. Hopkins, Curtis A. Lockshin, Fengjiang Wang
  • Publication number: 20090163593
    Abstract: One aspect of the present invention relates to amines. A second aspect of the present invention relates to the use of the amines as inhibitors of a mammalian anandamide transporter. The compounds of the present invention will also find use in the treatment of numerous ailments, conditions and diseases which afflict mammals, including but not limited to asthma, neuropathic pain, persistent pain, inflammatory pain, hyperactivity, hypertension, brain ischemia, Parkinson's disease, spasticity, Tourette's syndrome, schizophrenia, hemorrhagic shock, septic shock, cardiac shock, migrane, Horton's headache, multiple sclerosis, anorexia, AIDS wasting syndrome, organ rejection, autoimmune diseases, allergy, arthritis, Crohn's disease, malignant gliomas, neurodegenerative diseases, Huntington's chorea, glaucoma, nausea, anxiety, psychosis, attention deficit hyperactivity disorder, premature ejaculation, and stroke.
    Type: Application
    Filed: February 25, 2009
    Publication date: June 25, 2009
    Inventors: Brian M. Aquila, Seth C. Hopkins, Curtis A. Lockshin, Fengjiang Wang
  • Patent number: 7511073
    Abstract: One aspect of the present invention relates to amines. A second aspect of the present invention relates to the use of the amines as inhibitors of a mammalian anandamide transporter. The compounds of the present invention will also find use in the treatment of numerous ailments, conditions and diseases which afflict mammals, including but not limited to asthma, neuropathic pain, persistent pain, inflammatory pain, hyperactivity, hypertension, brain ischemia, Parkinson's disease, spasticity, Tourette's syndrome, schizophrenia, hemorrhagic shock, septic shock, cardiac shock, migrane, Horton's headache, multiple sclerosis, anorexia, AIDS wasting syndrome, organ rejection, autoimmune diseases, allergy, arthritis, Crohn's disease, malignant gliomas, neurodegenerative diseases, Huntington's chorea, glaucoma, nausea, anxiety, psychosis, attention deficit hyperactivity disorder, premature ejaculation, and stroke.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: March 31, 2009
    Assignee: Sepracor, Inc.
    Inventors: Brian M. Aquila, Seth C. Hopkins, Curtis A. Lockshin, Fengjiang Wang
  • Patent number: 7262856
    Abstract: A microstructure-based chemical sensor that can be interrogated by a remote observer. The device acts as an electromagnetic wave filter in the optical region of the spectrum, filtering one or more wavelength bands where the band spectral notch location shifts in response to the accumulation of material on the surface of the microstructure sensor. The apparatus has a substrate having a surface relief structure containing dielectric bodies with one or more physical dimensions smaller than the wavelength of the filtered electromagnetic waves, such structures repeated in an array covering at least a portion of the surface of the substrate. A retro-reflecting structure allows interrogation of the sensor over a wide field of view. The device is particularly useful as a water monitoring device in hard to reach locations, and as a chemical warfare or explosives detector that can be read from a safe distance.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 28, 2007
    Inventors: Douglas S. Hobbs, Curtis A. Lockshin, James J. Cowan, Robert B. Nilsen
  • Publication number: 20070190603
    Abstract: Described herein is the self-assembly of amphiphilic peptides, i.e., peptides with alternating hydrophobic and hydrophilic residues, into macroscopic membranes. The membrane-forming peptides are greater than 12 amino acids in length, and preferably at least 16 amino acids, are complementary and are structurally compatible. Specifically, two peptides, (AEAEAKAK)2 (ARARADAD)2, were shown to self-assemble into macroscopic membranes. Conditions under which the peptides self-assemble into macroscopic membranes and methods for producing the membranes are also described. The macroscopic membranes have several interesting properties: they are stable in aqueous solution, serum, and ethanol, are highly resistant to heat, alkaline and acidic pH, chemical denaturants, and proteolytic digestion, and are non-cytotoxic.
    Type: Application
    Filed: August 29, 2006
    Publication date: August 16, 2007
    Inventors: Todd Holmes, Shuguang Zhang, Alexander Rich, C. DiPersio, Curtis Lockshin
  • Publication number: 20070036680
    Abstract: A microstructure-based chemical sensor that can be interrogated by a remote observer. The device acts as an electromagnetic wave filter in the optical region of the spectrum, filtering one or more wavelength bands where the band spectral notch location shifts in response to the accumulation of material on the surface of the microstructure sensor. The apparatus has a substrate having a surface relief structure containing dielectric bodies with one or more physical dimensions smaller than the wavelength of the filtered electromagnetic waves, such structures repeated in an array covering at least a portion of the surface of the substrate. A retro-reflecting structure allows interrogation of the sensor over a wide field of view. The device is particularly useful as a water monitoring device in hard to reach locations, and as a chemical warfare or explosives detector that can be read from a safe distance.
    Type: Application
    Filed: May 25, 2005
    Publication date: February 15, 2007
    Inventors: Douglas Hobbs, Curtis Lockshin, James Cowan, Robert Nilsen
  • Publication number: 20060281742
    Abstract: One aspect of the present invention relates to amines. A second aspect of the present invention relates to the use of the amines as inhibitors of a mammalian anandamide transporter. The compounds of the present invention will also find use in the treatment of numerous ailments, conditions and diseases which afflict mammals, including but not limited to asthma, neuropathic pain, persistent pain, inflammatory pain, hyperactivity, hypertension, brain ischemia, Parkinson's disease, spasticity, Tourette's syndrome, schizophrenia, hemorrhagic shock, septic shock, cardiac shock, migrane, Horton's headache, multiple sclerosis, anorexia, AIDS wasting syndrome, organ rejection, autoimmune diseases, allergy, arthritis, Crohn's disease, malignant gliomas, neurodegenerative diseases, Huntington's chorea, glaucoma, nausea, anxiety, psychosis, attention deficit hyperactivity disorder, premature ejaculation, and stroke.
    Type: Application
    Filed: May 23, 2006
    Publication date: December 14, 2006
    Inventors: Brian Aquila, Seth Hopkins, Curtis Lockshin, Fengjiang Wang
  • Patent number: 7098028
    Abstract: Described herein is the self-assembly of amphiphilic peptides, i.e., peptides with alternating hydrophobic and hydrophilic residues, into macroscopic membranes. The membrane-forming peptides are greater than 12 amino acids in length, and preferably at least 16 amino acids, are complementary and are structurally compatible. Specifically, two peptides, (AEAEAKAK)2 (ARARADAD)2, were shown to self-assemble into macroscopic membranes. Conditions under which the peptides self-assemble into macroscopic membranes and methods for producing the membranes are also described. The macroscopic membranes have several interesting properties: they are stable in aqueous solution, serum, and ethanol, are highly resistant to heat, alkaline and acidic pH, chemical denaturants, and proteolytic digestion, and are non-cytotoxic.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: August 29, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Todd Holmes, Shuguang Zhang, Alexander Rich, C. Michael DiPersio, Curtis Lockshin
  • Patent number: 7049329
    Abstract: One aspect of the present invention relates to amines. A second aspect of the present invention relates to the use of the amines as inhibitors of a mammalian anandamide transporter. The compounds of the present invention will also find use in the treatment of numerous ailments, conditions and diseases which afflict mammals, including but not limited to asthma, neuropathic pain, persistent pain, inflammatory pain, hyperactivity, hypertension, brain ischemia, Parkinson's disease, spasticity, Tourette's syndrome, schizophrenia, hemorrhagic shock, septic shock, cardiac shock, migrane, Horton's headache, multiple sclerosis, anorexia, AIDS wasting syndrome, organ rejection, autoimmune diseases, allergy, arthritis, Crohn's disease, malignant gliomas, neurodegenerative diseases, Huntington's chorea, glaucoma, nausea, anxiety, psychosis, attention deficit hyperactivity disorder, premature ejaculation, and stroke.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: May 23, 2006
    Assignee: Sepracor Inc.
    Inventors: Brian M. Aquila, Seth C. Hopkins, Curtis A. Lockshin, Fengjiang Wang
  • Patent number: 6800481
    Abstract: Described herein is the self-assembly of amphiphilic peptides, i.e., peptides with alternating hydrophobic and hydrophilic residues, into macroscopic membranes. The membrane-forming peptides are greater than 12 amino acids in length, and preferably at least 16 amino acids, are complementary and are structurally compatible. Specifically, two peptides, (AEAEAKAK)2 (ARARADAD)2, were shown to self-assemble into macroscopic membranes. Conditions under which the peptides self-assemble into macroscopic membranes and methods for producing the membranes are also described. The macroscopic membranes have several interesting properties: they are stable in aqueous solution, serum, and ethanol, are highly resistant to heat, alkaline and acidic pH, chemical denaturants, and proteolytic digestion, and are non-cytotoxic.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: October 5, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Todd Holmes, Shuguang Zhang, Alexander Rich, C. Michael DiPersio, Curtis Lockshin
  • Publication number: 20040087013
    Abstract: Described herein is the self-assembly of amphiphilic peptides, i.e., peptides with alternating hydrophobic and hydrophilic residues, into macroscopic membranes. The membrane-forming peptides are greater than 12 amino acids in length, and preferably at least 16 amino acids, are complementary and are structurally compatible. Specifically, two peptides, (AEAEAKAK)2 (ARARADAD)2, were shown to self-assemble into macroscopic membranes. Conditions under which the peptides self-assemble into macroscopic membranes and methods for producing the membranes are also described. The macroscopic membranes have several interesting properties: they are stable in aqueous solution, serum, and ethanol, are highly resistant to heat, alkaline and acidic pH, chemical denaturants, and proteolytic digestion, and are non-cytotoxic.
    Type: Application
    Filed: March 17, 2003
    Publication date: May 6, 2004
    Inventors: Todd Holmes, Shuguang Zhang, Alexander Rich, C. Michael DiPersio, Curtis Lockshin
  • Publication number: 20040048907
    Abstract: One aspect of the present invention relates to amines. A second aspect of the present invention relates to the use of the amines as inhibitors of a mammalian anandamide transporter. The compounds of the present invention will also find use in the treatment of numerous ailments, conditions and diseases which afflict mammals, including but not limited to asthma, neuropathic pain, persistent pain, inflammatory pain, hyperactivity, hypertension, brain ischemia, Parkinson's disease, spasticity, Tourette's syndrome, schizophrenia, hemorrhagic shock, septic shock, cardiac shock, migrane, Horton's headache, multiple sclerosis, anorexia, AIDS wasting syndrome, organ rejection, autoimmune diseases, allergy, arthritis, Crohn's disease, malignant gliomas, neurodegenerative diseases, Huntington's chorea, glaucoma, nausea, anxiety, psychosis, attention deficit hyperactivity disorder, premature ejaculation, and stroke.
    Type: Application
    Filed: May 15, 2003
    Publication date: March 11, 2004
    Inventors: Brian M. Aquila, Seth C. Hopkins, Curtis A. Lockshin, Fengjiang Wang
  • Patent number: 6548630
    Abstract: Described herein is the self-assembly of amphiphilic peptides, i.e., peptides with alternating hydrophobic and hydrophilic residues, into macroscopic membranes. The membrane-forming peptides are greater than 12 amino acids in length, and preferably at least 16 amino acids, are complementary and are structurally compatible. Specifically, two peptides, (AEAEAKAK)2 (ARARADAD)2, were shown to self-assemble into macroscopic membranes. Conditions under which the peptides self-assemble into macroscopic membranes and methods for producing the membranes are also described. The macroscopic membranes have several interesting properties: they are stable in aqueous solution, serum, and ethanol, are highly resistant to heat, alkaline and acidic pH, chemical denaturants, and proteolytic digestion, and are non-cytotoxic.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: April 15, 2003
    Assignee: Massachusettes Insitute of Technology
    Inventors: Shuguang Zhang, Curtis Lockshin, Alexander Rich, Todd Holmes
  • Patent number: 5955343
    Abstract: Described herein is the self-assembly of amphiphilic peptides, i.e., peptides with alternating hydrophobic and hydrophilic residues, into macroscopic membranes. The membrane-forming peptides are greater than 12 amino acids in length, and preferably at least 16 amino acids, are complementary and are structurally compatible. Specifically, two peptides, (AEAEAKAK).sub.2 (ARARADAD).sub.2, were shown to self-assemble into macroscopic membranes. Conditions under which the peptides self-assemble into macroscopic membranes and methods for producing the membranes are also described. The macroscopic membranes have several interesting properties: they are stable in aqueous solution, serum, and ethanol, are highly resistant to heat, alkaline and acidic pH, chemical denaturants, and proteolytic digestion, and are non-cytotoxic.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: September 21, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Todd Holmes, Shuguang Zhang, Alexander Rich, C. Michael DiPersio, Curtis Lockshin
  • Patent number: 5670483
    Abstract: Described herein is the self-assembly of amphiphilic peptides, i.e., peptides with alternating hydrophobic and hydrophilic residues, into macroscopic membranes. The membrane-forming peptides are greater than 12 amino acids in length, and preferably at least 16 amino acids, are complementary and are structurally compatible. Specifically, two peptides, (AEAEAKAK).sub.2 (ARARADAD).sub.2, were shown to self-assemble into macroscopic membranes. Conditions under which the peptides self-assemble into macroscopic membranes and methods for producing the membranes are also described. The macroscopic membranes have several interesting properties: they are stable in aqueous solution, serum, and ethanol, are highly resistant to heat, alkaline and acidic pH, chemical denaturants, and proteolytic digestion, and are non-cytotoxic.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: September 23, 1997
    Assignee: Massachusetts Insititute of Technology
    Inventors: Shuguang Zhang, Curtis Lockshin, Alexander Rich, Todd Holmes