Patents by Inventor Curtis Tsai
Curtis Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210036026Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: ApplicationFiled: October 16, 2020Publication date: February 4, 2021Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
-
Patent number: 10847544Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: GrantFiled: May 14, 2020Date of Patent: November 24, 2020Assignee: Intel CorporationInventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
-
Publication number: 20200273887Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: ApplicationFiled: May 14, 2020Publication date: August 27, 2020Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
-
Publication number: 20200251470Abstract: Two or more types of fin-based transistors having different gate structures and formed on a single integrated circuit are described. The gate structures for each type of transistor are distinguished at least by the thickness or composition of the gate dielectric layer(s) or the composition of the work function metal layer(s) in the gate electrode. Methods are also provided for fabricating an integrated circuit having at least two different types of fin-based transistors, where the transistor types are distinguished by the thickness and composition of the gate dielectric layer(s) and/or the thickness and composition of the work function metal in the gate electrode.Type: ApplicationFiled: April 13, 2020Publication date: August 6, 2020Inventors: Curtis TSAI, Chia-Hong JAN, Jeng-Ya David YEH, Joodong PARK, Walid M. HAFEZ
-
Patent number: 10692888Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: GrantFiled: April 5, 2018Date of Patent: June 23, 2020Assignee: Intel CorporationInventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
-
Patent number: 10658361Abstract: Two or more types of fin-based transistors having different gate structures and formed on a single integrated circuit are described. The gate structures for each type of transistor are distinguished at least by the thickness or composition of the gate dielectric layer(s) or the composition of the work function metal layer(s) in the gate electrode. Methods are also provided for fabricating an integrated circuit having at least two different types of fin-based transistors, where the transistor types are distinguished by the thickness and composition of the gate dielectric layer(s) and/or the thickness and composition of the work function metal in the gate electrode.Type: GrantFiled: December 28, 2011Date of Patent: May 19, 2020Assignee: Intel CorporationInventors: Curtis Tsai, Chia-Hong Jan, Jeng-Ya David Yeh, Joodong Park, Walid M. Hafez
-
Patent number: 10505034Abstract: A vertical transistor is described that uses a through silicon via as a gate. In one example, the structure includes a substrate, a via in the substrate, the via being filled with a conductive material and having a dielectric liner, a deep well coupled to the via, a drain area coupled to the deep well having a drain contact, a source area between the drain area and the via having a source contact, and a gate contact over the via.Type: GrantFiled: June 19, 2015Date of Patent: December 10, 2019Assignee: Intel CorporationInventors: Xiaodong Yang, Jui-Yen Lin, Kinyip Phoa, Nidhi Nidhi, Yi Wei Chen, Kun-Huan Shih, Walid M. Hafez, Curtis Tsai
-
Patent number: 10263112Abstract: Vertical non-planar semiconductor devices for system-on-chip (SoC) applications and methods of fabricating vertical non-planar semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate, the semiconductor fin having a recessed portion and an uppermost portion. A source region is disposed in the recessed portion of the semiconductor fin. A drain region is disposed in the uppermost portion of the semiconductor fin. A gate electrode is disposed over the uppermost portion of the semiconductor fin, between the source and drain regions.Type: GrantFiled: November 16, 2016Date of Patent: April 16, 2019Assignee: Intel CorporationInventors: Chia-Hong Jan, Walid M. Hafez, Curtis Tsai, Jeng-Ya D. Yeh, Joodong Park
-
Patent number: 10229866Abstract: Techniques are disclosed for providing on-chip capacitance using through-body-vias (TBVs). In accordance with some embodiments, a TBV may be formed within a semiconductor layer, and a dielectric layer may be formed between the TBV and the surrounding semiconductor layer. The TBV may serve as one electrode (e.g., anode) of a TBV capacitor, and the dielectric layer may serve as the dielectric body of that TBV capacitor. In some embodiments, the semiconductor layer serves as the other electrode (e.g., cathode) of the TBV capacitor. To that end, in some embodiments, the entire semiconductor layer may comprise a low-resistivity material, whereas in some other embodiments, low-resistivity region(s) may be provided just along the sidewalls local to the TBV, for example, by selective doping in those location(s). In other embodiments, a conductive layer formed between the dielectric layer and the semiconductor layer serves as the other electrode (e.g., cathode) of the TBV capacitor.Type: GrantFiled: June 22, 2015Date of Patent: March 12, 2019Assignee: Intel CorporationInventors: Yi Wei Chen, Kinyip Phoa, Nidhi Nidhi, Jui-Yen Lin, Kun-Huan Shih, Xiaodong Yang, Walid M. Hafez, Curtis Tsai
-
Patent number: 10096599Abstract: Two or more types of fin-based transistors having different gate structures and formed on a single integrated circuit are described. The gate structures for each type of transistor are distinguished at least by the thickness or composition of the gate dielectric layer(s) or the composition of the work function metal layer(s) in the gate electrode. Methods are also provided for fabricating an integrated circuit having at least two different types of fin-based transistors, where the transistor types are distinguished by the thickness and composition of the gate dielectric layer(s) and/or the thickness and composition of the work function metal in the gate electrode.Type: GrantFiled: December 21, 2015Date of Patent: October 9, 2018Assignee: Intel CorporationInventors: Curtis Tsai, Chia-Hong Jan, Jeng-Ya David Yeh, Joodong Park, Walid M. Hafez
-
Publication number: 20180226432Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: ApplicationFiled: April 5, 2018Publication date: August 9, 2018Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
-
Publication number: 20180151474Abstract: Techniques are disclosed for providing on-chip capacitance using through-body-vias (TBVs). In accordance with some embodiments, a TBV may be formed within a semiconductor layer, and a dielectric layer may be formed between the TBV and the surrounding semiconductor layer. The TBV may serve as one electrode (e.g., anode) of a TBV capacitor, and the dielectric layer may serve as the dielectric body of that TBV capacitor. In some embodiments, the semiconductor layer serves as the other electrode (e.g., cathode) of the TBV capacitor. To that end, in some embodiments, the entire semiconductor layer may comprise a low-resistivity material, whereas in some other embodiments, low-resistivity region(s) may be provided just along the sidewalls local to the TBV, for example, by selective doping in those location(s). In other embodiments, a conductive layer formed between the dielectric layer and the semiconductor layer serves as the other electrode (e.g., cathode) of the TBV capacitor.Type: ApplicationFiled: June 22, 2015Publication date: May 31, 2018Applicant: INTEL CORPORATIONInventors: YI WEI CHEN, KINYIP PHOA, NIDHI NIDHI, JUI-YEN LIN, KUN-HUAN SHIH, XIAODONG YANG, WALID M. HAFEZ, CURTIS TSAI
-
Patent number: 9972642Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: GrantFiled: October 16, 2017Date of Patent: May 15, 2018Assignee: Intel CorporationInventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
-
Publication number: 20180130902Abstract: A vertical transistor is described that uses a through silicon via as a gate. In one example, the structure includes a substrate, a via in the substrate, the via being filled with a conductive material and having a dielectric liner, a deep well coupled to the via, a drain area coupled to the deep well having a drain contact, a source area between the drain area and the via having a source contact, and a gate contact over the via.Type: ApplicationFiled: June 19, 2015Publication date: May 10, 2018Inventors: Xiaodong YANG, Jui-Yen LIN, Kinyip PHOA, Nidhi NIDHI, Yi Wei CHEN, Kun-Huan SHIH, Walid M. HAFEZ, Curtis TSAI
-
Publication number: 20180040637Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: ApplicationFiled: October 16, 2017Publication date: February 8, 2018Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
-
Patent number: 9806095Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.Type: GrantFiled: December 18, 2015Date of Patent: October 31, 2017Assignee: Intel CorporationInventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
-
Patent number: 9786783Abstract: Techniques are disclosed for forming transistor architectures having extended recessed spacer and source/drain (S/D) regions. In some embodiments, a recess can be formed, for example, in the top of a fin of a fin-based field-effect transistor (finFET), such that the recess allows for forming extended recessed spacers and S/D regions in the finFET that are adjacent to the gate stack. In some instances, this configuration provides a higher resistance path in the top of the fin, which can reduce gate-induced drain leakage (GIDL) in the finFET. In some embodiments, precise tuning of the onset of GIDL can be provided. Some embodiments may provide a reduction in junction leakage (Lb) and a simultaneous increase in threshold voltage (VT). The disclosed techniques can be implemented with planar and non-planar fin-based architectures and can be used in standard metal-oxide-semiconductor (MOS) and complementary MOS (CMOS) process flows, in some embodiments.Type: GrantFiled: March 29, 2013Date of Patent: October 10, 2017Assignee: INTEL CORPORATIONInventors: Walid M. Hafez, Joodong Park, Jeng-Ya D. Yeh, Chia-Hong Jan, Curtis Tsai
-
Patent number: 9748252Abstract: Techniques for providing non-volatile antifuse memory elements and other antifuse links are disclosed herein. In some embodiments, the antifuse memory elements are configured with non-planar topology such as FinFET topology. In some such embodiments, the fin topology can be manipulated and used to effectively promote lower breakdown voltage transistors, by creating enhanced-emission sites which are suitable for use in lower voltage non-volatile antifuse memory elements. In one example embodiment, a semiconductor antifuse device is provided that includes a non-planar diffusion area having a fin configured with a tapered portion, a dielectric isolation layer on the fin including the tapered portion, and a gate material on the dielectric isolation layer. The tapered portion of the fin may be formed, for instance, by oxidation, etching, and/or ablation, and in some cases includes a base region and a thinned region, and the thinned region is at least 50% thinner than the base region.Type: GrantFiled: October 12, 2015Date of Patent: August 29, 2017Assignee: INTEL CORPORATIONInventors: Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park, Jeng-Ya D. Yeh
-
Patent number: 9741721Abstract: Low leakage non-planar access transistors for embedded dynamic random access memory (eDRAM) and methods of fabricating low leakage non-planar access transistors for eDRAM are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate and including a narrow fin region disposed between two wide fin regions. A gate electrode stack is disposed conformal with the narrow fin region of the semiconductor fin, the gate electrode stack including a gate electrode disposed on a gate dielectric layer. The gate dielectric layer includes a lower layer and an upper layer, the lower layer composed of an oxide of the semiconductor fin. A pair of source/drain regions is included, each of the source/drain regions disposed in a corresponding one of the wide fin regions.Type: GrantFiled: September 27, 2013Date of Patent: August 22, 2017Assignee: Intel CorporationInventors: Joodong Park, Gopinath Bhimarasetti, Rahul Ramaswamy, Chia-Hong Jan, Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai
-
Publication number: 20170069758Abstract: Vertical non-planar semiconductor devices for system-on-chip (SoC) applications and methods of fabricating vertical non-planar semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate, the semiconductor fin having a recessed portion and an uppermost portion. A source region is disposed in the recessed portion of the semiconductor fin. A drain region is disposed in the uppermost portion of the semiconductor fin. A gate electrode is disposed over the uppermost portion of the semiconductor fin, between the source and drain regions.Type: ApplicationFiled: November 16, 2016Publication date: March 9, 2017Inventors: Chia-Hong Jan, Walid M. Hafez, Curtis Tsai, Jeng-Ya D. Yeh, Joodong Park