Patents by Inventor Curtis W. Hill

Curtis W. Hill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958246
    Abstract: An apparatus includes a transparent chamber having a space therein for containing an object while heating under vacuum, at least one directed energy source configured to direct energy to heat the object positioned within the space of the transparent chamber, a cap on the transparent chamber, and a connection between the transparent chamber and at least one vacuum for creating a vacuum within the transparent chamber. The apparatus may further include at least one temperature sensor to measure temperature of the object. The apparatus may further include a control system, the control system operatively connected to the at least one temperature sensor and the at least one directed energy source and wherein the control system is a closed loop system to adjust laser power to provide more or less energy to heat or maintain the temperature of the object.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: April 16, 2024
    Assignee: SCIPERIO, INC
    Inventors: Kenneth H. Church, Paul I. Deffenbaugh, Casey W. Perkowski, Curtis Wayne Hill
  • Patent number: 11230501
    Abstract: Nano-sized particles of barium-titanate are heated as a gas mixture of 25% hydrogen and 75% nitrogen is passed there through yielding particles of barium-titanate having oxygen vacancies therein. The particles of barium-titanate having oxygen vacancies therein are coated with silica yielding silica-coated particles having a silica coating thickness in a range of 2-5 nanometers. The silica-coated particles are sintered by application of pressure in a range of 35-50 megapascals and temperature in a range of 950-1050° C. The sintered quantity of material is cooled at a cooling rate in a range of 1-3° C. per minute at least until the temperature thereof is less than 120° C.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 25, 2022
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Dennis S. Tucker, Terry D. Rolin, Curtis W. Hill
  • Patent number: 10573464
    Abstract: An energy storage capacitor has a solid dielectric sandwiched between two electrodes. The solid dielectric is a lanthanum-doped barium titanate-based ceramic material. A dopant is selected from the group consisting of lanthanum hydroxide and lanthanum oxide, and a co-dopant is an alkali hydroxide selected from the group consisting of potassium hydroxide, sodium hydroxide, rubidium hydroxide, and lithium hydroxide.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: February 25, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Terry D. Rolin, Ian K. Small, Curtis W. Hill
  • Patent number: 10573465
    Abstract: A solid dielectric for an energy storage capacitor is a lanthanum-doped barium titanate-based ceramic material. A dopant is selected from the group consisting of lanthanum hydroxide and lanthanum oxide, and a co-dopant is an alkali hydroxide selected from the group consisting of potassium hydroxide, sodium hydroxide, rubidium hydroxide, and lithium hydroxide.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: February 25, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Terry D. Rolin, Ian K. Small, Curtis W. Hill
  • Patent number: 10453621
    Abstract: An ink of the formula: 60-80% by weight BaTiO3 particles coated with SiO2; 5-50% by weight high dielectric constant glass; 0.1-5% by weight surfactant; 5-25% by weight solvent; and 5-25% weight organic vehicle. Also a dielectric made by: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; forming them into a layer; and heating at 850-900° C. for less than 5 minutes and allowing the layer to cool to ambient temperature in N2 atmosphere.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 22, 2019
    Inventors: Terry D. Rolin, Curtis W. Hill
  • Publication number: 20190300434
    Abstract: Nano-sized powder particles of barium titanate are coated with silica yielding silica-coated particles having a silica coating thickness in a range of 2-5 nanometers. The silica-coated particles are sintered by application of pressure in a range of 35-50 megapascals and temperature in a range of 950-1050° C. The sintered quantity of material is cooled at a cooling rate in a range of 1-3° C. per minute at least until the temperature thereof is less than 120° C.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventors: Dennis Stephen Tucker, Terry D. Rolin, Curtis W. Hill
  • Patent number: 10325724
    Abstract: An energy storage system includes a hermetically-sealed casing defining a volume whose relative humidity is a range of 30-90%. At least one energy storage capacitor disposed in the volume has a solid dielectric sandwiched between two electrodes with the solid dielectric being a lanthanum-doped barium titanate-based ceramic material.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 18, 2019
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Terry D. Rolin, Ian K. Small, Curtis W. Hill
  • Publication number: 20190066930
    Abstract: A solid dielectric for an energy storage capacitor is a lanthanum-doped barium titanate-based ceramic material. A dopant is selected from the group consisting of lanthanum hydroxide and lanthanum oxide, and a co-dopant is an alkali hydroxide selected from the group consisting of potassium hydroxide, sodium hydroxide, rubidium hydroxide, and lithium hydroxide.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 28, 2019
    Inventors: Terry D. Rolin, Ian K. Small, Curtis W. Hill
  • Publication number: 20190066929
    Abstract: An energy storage capacitor has a solid dielectric sandwiched between two electrodes. The solid dielectric is a lanthanum-doped barium titanate-based ceramic material. A dopant is selected from the group consisting of lanthanum hydroxide and lanthanum oxide, and a co-dopant is an alkali hydroxide selected from the group consisting of potassium hydroxide, sodium hydroxide, rubidium hydroxide, and lithium hydroxide.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 28, 2019
    Inventors: Terry D. Rolin, Ian K. Small, Curtis W. Hill
  • Publication number: 20180286590
    Abstract: An energy storage system includes a hermetically-sealed casing defining a volume whose relative humidity is a range of 30-90%. At least one energy storage capacitor disposed in the volume has a solid dielectric sandwiched between two electrodes with the solid dielectric being a lanthanum-doped barium titanate-based ceramic material.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Terry D. Rolin, Ian K. Small, Curtis W. Hill
  • Publication number: 20180102224
    Abstract: An ink of the formula: 60-80% by weight BaTiO3 particles coated with SiO2; 5-50% by weight high dielectric constant glass; 0.1-5% by weight surfactant; 5-25% by weight solvent; and 5-25% weight organic vehicle. Also a dielectric made by: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; forming them into a layer; and heating at 850-900° C. for less than 5 minutes and allowing the layer to cool to ambient temperature in N2 atmosphere.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 12, 2018
    Inventors: Terry D. Rolin, Curtis W. Hill
  • Patent number: 9881747
    Abstract: An ink of the formula: 60-80% by weight BaTiO3 particles coated with SiO2; 5-50% by weight high dielectric constant glass; 0.1-5% by weight surfactant; 5-25% by weight solvent; and 5-25% weight organic vehicle. Also a method of manufacturing a capacitor comprising the steps of: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; incorporating them into the above described ink formulation; depositing the ink on a substrate; and heating at 850-900° C. for less than 5 minutes and allowing the ink and substrate to cool to ambient in N2 atmosphere. Also a dielectric made by: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; forming them into a layer; and heating at 850-900° C.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 30, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Terry D. Rolin, Curtis W. Hill
  • Patent number: 9745481
    Abstract: The present invention is a dielectric ink and means for printing using said ink. Approximately 10-20% of the ink is a custom organic vehicle made of a polar solvent and a binder. Approximately 30-70% of the ink is a dielectric powder having an average particle diameter of approximately 10-750 nm. Approximately 5-15% of the ink is a dielectric constant glass. Approximately 10-35% of the ink is an additional amount of solvent. The ink is deposited on a printing substrate to form at least one printed product, which is then dried and cured to remove the solvent and binder, respectively. The printed product then undergoes sintering in an inert gas atmosphere.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: August 29, 2017
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventors: Terry D. Rolin, Curtis W. Hill
  • Publication number: 20170221648
    Abstract: An ink of the formula: 60-80% by weight BaTiO3 particles coated with SiO2; 5-50% by weight high dielectric constant glass; 0.1-5% by weight surfactant; 5-25% by weight solvent; and 5-25% weight organic vehicle. Also a method of manufacturing a capacitor comprising the steps of: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; incorporating them into the above described ink formulation; depositing the ink on a substrate; and heating at 850-900° C. for less than 5 minutes and allowing the ink and substrate to cool to ambient in N2 atmosphere. Also a dielectric made by: heating particles of BaTiO3 for a special heating cycle, under a mixture of 70-96% by volume N2 and 4-30% by volume H2 gas; depositing a film of SiO2 over the particles; mechanically separating the particles; forming them into a layer; and heating at 850-900° C.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: Terry D. Rolin, Curtis W. Hill
  • Publication number: 20170174915
    Abstract: The present invention is a dielectric ink and means for printing using said ink. Approximately 10-20% of the ink is a custom organic vehicle made of a polar solvent and a binder. Approximately 30-70% of the ink is a dielectric powder having an average particle diameter of approximately 10-750 nm. Approximately 5-15% of the ink is a dielectric constant glass. Approximately 10-35% of the ink is an additional amount of solvent. The ink is deposited on a printing substrate to form at least one printed product, which is then dried and cured to remove the solvent and binder, respectively. The printed product then undergoes sintering in an inert gas atmosphere.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 22, 2017
    Inventors: Terry D. Rolin, Curtis W. Hill
  • Publication number: 20170121548
    Abstract: An inked electrical conductor comprises a mixture of silver powder and ethyl cellulose. The silver powder is in a range of approximately 99.0 weight percent of the mixture to approximately 99.5 weight percent of the mixture. The ethyl cellulose is in a range of approximately 0.5 weight percent of the mixture to approximately 1.0 weight percent of the mixture.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 4, 2017
    Inventor: Curtis W. Hill