Patents by Inventor Cynthia K. Zimmerman

Cynthia K. Zimmerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10131591
    Abstract: Processes using mid-column reboilers in at least one benzene separation columns to reduce the heat duty in alkylation processes are provided. The feed to the aromatics removal zone may exchange heat in a mid-column reboiler in the benzene separation column in the alkylbenzene separation zone followed by exchanging heat in a mid-column reboiler in the benzene separation column in the aromatics removal zone. This arrangement minimizes the hot oil duty on the reboilers in both benzene separation columns.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: November 20, 2018
    Assignees: UOP, LLC, Compañia Española de Petroleos, S.A.U.
    Inventors: Nathan Siedler, Charles P. Luebke, Cynthia K. Zimmerman, Jacques Meunier, Leopoldo R. Alcázar
  • Patent number: 10065908
    Abstract: Processes for removal of heavy aromatic compounds in an alkylated aromatic compounds production complex is disclosed. The processes includes separating a first component from a second component comprising introducing a feed stream comprising the second component and less than about 5 wt % of the first component to one or more top trays of a prefractionation column. The feed stream is separated in the prefractionation column to provide a prefractionation column overhead stream comprising at least about 50 wt % of the second component present in the feed stream and a prefractionation column bottoms stream. A first portion of the prefractionation columns bottom stream is vaporized by heat exchange with a low temperature fluid stream having a temperature of about 150-200° C. in a reboiler and passing the vaporized first portion through the prefractionation column.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: September 4, 2018
    Assignee: UOP LLC
    Inventors: Nathan A. Siedler, Charles P. Luebke, Cynthia K. Zimmerman
  • Publication number: 20180179124
    Abstract: Processes using mid-column reboilers in at least one benzene separation columns to reduce the heat duty in alkylation processes are provided. The feed to the aromatics removal zone may exchange heat in a mid-column reboiler in the benzene separation column in the alkylbenzene separation zone followed by exchanging heat in a mid-column reboiler in the benzene separation column in the aromatics removal zone.
    Type: Application
    Filed: December 28, 2017
    Publication date: June 28, 2018
    Inventors: Nathan Siedler, Charles P. Luebke, Cynthia K. Zimmerman, Jacques Meunier, Leopoldo R. Alcázar
  • Patent number: 9126875
    Abstract: An adsorption process using a fractionation column including a drying section is described. The drying section dries the desorbent and removes water from the adsorption process resulting in increased capacity for the adsorbent bed.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: September 8, 2015
    Assignee: UOP LLC
    Inventors: Jeffrey L. Pieper, Stephen W. Sohn, Peter M. Bernard, Cynthia K. Zimmerman
  • Publication number: 20150005561
    Abstract: An adsorption process using a fractionation column including a drying section is described. The drying section dries the desorbent and removes water from the adsorption process resulting in increased capacity for the adsorbent bed.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Jeffrey L. Pieper, Stephen W. Sohn, Peter M. Bernard, Cynthia K. Zimmerman
  • Patent number: 8624074
    Abstract: A process for the dehydrogenation of paraffins is presented. The process utilizes a rapid recycling of dehydrogenation catalyst between the dehydrogenation reactor and the catalyst regeneration unit. The process comprises preheating a combined hydrogen and paraffin hydrocarbon feedstream and passing the combined stream to a dehydrogenation reactor. The hydrocarbon feedstream and the catalyst pass through the reactor at a rate to limit the average residence time of the catalyst in the reactor. The catalyst is cycled to a regeneration unit, and passed through the regeneration unit to limit the average residence time of the catalyst in the regeneration unit.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: January 7, 2014
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, Cynthia K. Zimmerman
  • Patent number: 8586816
    Abstract: A process to reduce flush circulation rates in an adsorption separation system is presented. The flush stream is used to improve the capacity of the simulated moving bed system by flushing the contents of the transfer lines containing raffinate material back into the adsorbent column. The flush stream is a material that is used to flush the head chambers in the column, or from the rotary valve flush dome sealant.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 19, 2013
    Assignee: UOP LLC
    Inventors: Jeffrey L. Pieper, Stephen W. Sohn, Peter M. Bernard, Cynthia K. Zimmerman
  • Patent number: 8404916
    Abstract: Embodiments of the present invention provide, for an adsorption separation system for separating normal paraffins from a hydrocarbon feed stream, a process for switching the adsorption separation from a triple split desorbent system to a dual split desorbent system, and vice versa. Switching occurs by separating and/or introducing a second flush material in the adsorption separation system. This switching can occur during normal operations.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventors: Jeffrey L. Pieper, Cynthia K. Zimmerman, Stephen W. Sohn, Steven P. Lankton
  • Publication number: 20120157744
    Abstract: A process to reduce flush circulation rates in an adsorption separation system is presented. The flush stream is used to improve the capacity of the simulated moving bed system by flushing the contents of the transfer lines containing raffinate material back into the adsorbent column. The flush stream is a material that is used to flush the head chambers in the column, or from the rotary valve flush dome sealant.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 21, 2012
    Applicant: UOP LLC
    Inventors: Jeffrey L. Pieper, Stephen W. Sohn, Peter M. Bernard, Cynthia K. Zimmerman
  • Publication number: 20110230698
    Abstract: A process for the dehydrogenation of paraffins is presented. The process utilizes a rapid recycling of dehydrogenation catalyst between the dehydrogenation reactor and the catalyst regeneration unit. The process comprises preheating a combined hydrogen and paraffin hydrocarbon feedstream and passing the combined stream to a dehydrogenation reactor. The hydrocarbon feedstream and the catalyst pass through the reactor at a rate to limit the average residence time of the catalyst in the reactor. The catalyst is cycled to a regeneration unit, and passed through the regeneration unit to limit the average residence time of the catalyst in the regeneration unit.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Applicant: UOP LLC
    Inventors: Gavin P. Towler, Cynthia K. Zimmerman
  • Patent number: 7910070
    Abstract: A process and system for separating and saturating benzene from a reforming reactor effluent begins with introducing the reforming reactor effluent to a combined stabilizer and naphtha splitter. An overhead stream comprising light ends, a sidecut stream comprising C4? C5 compounds, a bottoms stream comprising C7+ compounds and a heart cut stream comprising C4, C5, C6 compounds including benzene are all removed from the combined stabilizer and naphtha splitter. The heart cut stream is introduced to a side stripper to produce a side stripper overhead stream reduced in benzene and a side stripper bottoms stream enriched in benzene. At least a portion of the side stripper bottoms stream enriched in benzene is introduced into a hydrogenation zone to saturate benzene and generate a hydrogenation zone effluent reduced in benzene. The side stripper overhead stream may be recycled to the combined stabilizer and naphtha splitter.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: March 22, 2011
    Assignee: UOP LLC
    Inventors: Cynthia K. Zimmerman, Gavin P. Towler
  • Publication number: 20100143213
    Abstract: A process and system for separating and saturating benzene from a reforming reactor effluent begins with introducing the reforming reactor effluent to a combined stabilizer and naphtha splitter. An overhead stream comprising light ends, a sidecut stream comprising C4? C5 compounds, a bottoms stream comprising C7+ compounds and a heart cut stream comprising C4, C5, C6 compounds including benzene are all removed from the combined stabilizer and naphtha splitter. The heart cut stream is introduced to a side stripper to produce a side stripper overhead stream reduced in benzene and a side stripper bottoms stream enriched in benzene. At least a portion of the side stripper bottoms stream enriched in benzene is introduced into a hydrogenation zone to saturate benzene and generate a hydrogenation zone effluent reduced in benzene. The side stripper overhead stream may be recycled to the combined stabilizer and naphtha splitter.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Inventors: Cynthia K. Zimmerman, Gavin P. Towler
  • Publication number: 20100145118
    Abstract: A process and system for separating and saturating benzene from a reforming reactor effluent begins with introducing the reforming reactor effluent to a combined stabilizer and naphtha splitter. An overhead stream comprising light ends, a sidecut stream comprising C4-C5 compounds, a bottoms stream comprising C7+ compounds and a heart cut stream comprising C4, C5, C6 compounds including benzene are all removed from the combined stabilizer and naphtha splitter. The heart cut stream is introduced to a side stripper to produce a side stripper overhead stream reduced in benzene and a side stripper bottoms stream enriched in benzene. At least a portion of the side stripper bottoms stream enriched in benzene is introduced into a hydrogenation zone to saturate benzene and generate a hydrogenation zone effluent reduced in benzene. The side stripper overhead stream may be recycled to the combined stabilizer and naphtha splitter.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Inventors: Cynthia K. Zimmerman, Gavin P. Towler