Patents by Inventor Cynthia M. Goh

Cynthia M. Goh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8283036
    Abstract: A composite nanoparticle comprising a nanoparticle confined within a cross-linked collapsed polyelectrolyte polymer wherein the nanoparticle comprises a charged organic ion.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: October 9, 2012
    Assignee: Vive Crop Protection, Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Darren Anderson
  • Patent number: 8283156
    Abstract: The present invention relates to a method and apparatus for detecting analytes in a medium, and more particularly the present invention relates to an assay based on light diffraction which appears or changes upon the binding of analytes to their specific receptors laid out in patterns on a substrate, which has high sensitivity due to the appropriate choice of such patterns. The present invention is based on the principle that the pattern of recognition elements, which gives rise to the diffraction of the incident light in a diffraction-based assay, can be chosen in such a way so as to facilitate detection, and to enhance the signal to be detected compared to known gratings such as parallel straight lines. In one aspect the substrate itself has a surface topography designed to enhance the diffraction pattern signals. In another aspect the substrate is a diffractive optic element having the analyte-specific receptors affixed to the optic element.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 9, 2012
    Assignee: Axela Inc.
    Inventors: Cynthia M. Goh, Richard Loo, Jane B. Goh, Richard McAloney
  • Patent number: 8257785
    Abstract: A method for producing a composite nanoparticle, including the steps of: changing the conformation of a dissolved polyelectrolyte polymer from a first extended conformation to a more compact conformation by changing a solution condition so that at least a portion of the polyelectrolyte polymer is associated with a precursor moiety to form a composite precursor moiety with a mean diameter in the range between about 1 nm and about 100 nm; and cross-linking the polyelectrolyte polymer of the composite precursor moiety to form a composite nanoparticle.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: September 4, 2012
    Assignee: Vive Crop Protection, Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Darren Anderson
  • Patent number: 8182867
    Abstract: A method for producing a composite nanoparticle, including the steps of, collapsing at least a portion of a polyelectrolyte polymer in solution about one or more precursor moieties to form a composite precursor moiety having a mean diameter in the range between about 1 nm and about 100 nm, wherein the polyelectrolyte polymer has an extended conformation in a first solution state and a more compact conformation in a second solution state; and cross-linking the polyelectrolyte polymer of the composite precursor moiety to form a composite nanoparticle wherein the precursory moiety is a charged organic ion.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 22, 2012
    Assignee: Vive Crop Protection
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Darren Anderson
  • Publication number: 20120029109
    Abstract: A method for producing a composite nanoparticle, including the steps of, collapsing at least a portion of a polyelectrolyte polymer in solution about one or more precursor moieties to form a composite precursor moiety having a mean diameter in the range between about 1 nm and about 100 nm, wherein the polyelectrolyte polymer has an extended conformation in a first solution state and a more compact conformation in a second solution state; and cross-linking the polyelectrolyte polymer of the composite precursor moiety to form a composite nanoparticle wherein the precursory moiety is a charged organic ion.
    Type: Application
    Filed: June 17, 2011
    Publication date: February 2, 2012
    Applicant: VIVE NANO, INC.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Darren Anderson
  • Publication number: 20120015800
    Abstract: A method for producing a composite nanoparticle, including the steps of: changing the conformation of a dissolved polyelectrolyte polymer from a first extended conformation to a more compact conformation by changing a solution condition so that at least a portion of the polyelectrolyte polymer is associated with a precursor moiety to form a composite precursor moiety with a mean diameter in the range between about 1 nm and about 100 nm; and cross-linking the polyelectrolyte polymer of the composite precursor moiety to form a composite nanoparticle.
    Type: Application
    Filed: June 17, 2011
    Publication date: January 19, 2012
    Applicant: VIVE NANO, INC.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Darren Anderson
  • Publication number: 20120015190
    Abstract: A composite nanoparticle comprising a nanoparticle confined within a cross-linked collapsed polyelectrolyte polymer wherein the nanoparticle comprises a charged organic ion.
    Type: Application
    Filed: June 17, 2011
    Publication date: January 19, 2012
    Applicant: VIVE NANO, INC.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Darren Anderson
  • Patent number: 8003166
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 23, 2011
    Assignee: Vive Nano, Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Emina Veletanlic
  • Patent number: 7964277
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material, said method including (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle. In various embodiments, a non-confined nanoparticle can be produced by complete pyrolysis of the confined nanoparticle, and a carbon-coated nanoparticle by incomplete pyrolysis of the confined nanoparticle.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: June 21, 2011
    Assignee: Vive Nano, Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Emina Veletanlic
  • Patent number: 7879596
    Abstract: The present invention relates to a method and apparatus for detecting analytes in a medium, and more particularly the present invention relates to an assay based on light diffraction which appears or changes upon the binding of analytes to their specific receptors laid out in patterns on a substrate, which has high sensitivity due to the appropriate choice of such patterns. The present invention is based on the principle that the pattern of recognition elements, which gives rise to the diffraction of the incident light in a diffraction-based assay, can be chosen in such a way so as to facilitate detection, and to enhance the signal to be detected compared to known gratings such as parallel straight lines. In one aspect the substrate itself has a surface topography designed to enhance the diffraction pattern signals. In another aspect the substrate is a diffractive optic element having the analyte-specific receptors affixed to the optic element.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 1, 2011
    Assignee: Axela Inc.
    Inventors: Cynthia M. Goh, Richard Loo, Jane B. Goh, Richard McAloney
  • Publication number: 20100137474
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle.
    Type: Application
    Filed: May 16, 2007
    Publication date: June 3, 2010
    Applicant: NORTHERN NANOTECHNOLOGIES
    Inventors: Cynthia M. Goh, Jose Arnado Dinglasan, Jane B. Goh, Richard Loo, Darren Anderson
  • Publication number: 20090148703
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle.
    Type: Application
    Filed: May 7, 2008
    Publication date: June 11, 2009
    Inventors: Cynthia M. GOH, Jose Amado Dinglasan, Jane B. GOH, Richard LOO, Emina VELETANLIC
  • Patent number: 7534490
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: May 19, 2009
    Assignee: Northern Nanotechnologies, Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Emina Veletanlic
  • Publication number: 20090124726
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material. In various embodiments, the methods comprise (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle.
    Type: Application
    Filed: September 23, 2008
    Publication date: May 14, 2009
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Emina Veletanlic
  • Patent number: RE45848
    Abstract: In various aspects provided are methods for producing a nanoparticle within a cross-linked, collapsed polymeric material, said method including (a) providing a polymeric solution comprising a polymeric material; (b) collapsing at least a portion of the polymeric material about one or more precursor moieties; (c) cross-linking the polymeric material; (d) modifying at least a portion of said precursor moieties to form one or more nanoparticles and thereby forming a composite nanoparticle. In various embodiments, a non-confined nanoparticle can be produced by complete pyrolysis of the confined nanoparticle, and a carbon-coated nanoparticle by incomplete pyrolysis of the confined nanoparticle.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: January 19, 2016
    Assignee: Vive Crop Protection Inc.
    Inventors: Cynthia M. Goh, Jose Amado Dinglasan, Jane B. Goh, Richard Loo, Emina Veletanlic