Patents by Inventor Cynthia Ming-Fu Kung

Cynthia Ming-Fu Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11583697
    Abstract: A system with integrated tracking includes a procedure-specific hardware component (112 or 116) disposed at or near a region of interest. A field generator (114) is configured to generate a field with a field of view covering the region of interest. A mounting device (115) is connected to the field generator and is coupled to the procedure-specific hardware. The field generator is fixedly positioned by the mounting device to permit workflow access to the region of interest without interfering with the field generator and to provide a known position of the field generator relative to the region of interest. A tracking device (110) is configured to be inserted in or near the region of interest to be tracked within the field of view of the field generator to generate tracking data.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: February 21, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jochen Kruecker, Shyam Bharat, Cynthia Ming-Fu Kung, Christopher Stephen Hall, Falk Uhlemann
  • Patent number: 11576728
    Abstract: An interventional tool stepper (30) employing a frame (31), a carriage (33), an optional gear assembly (32), and an optional grid template(34). The frame (31) is structurally configured to be positioned relative to an anatomical region for holding an interventional tool (40) relative to the anatomical region. The carriage (33) is structurally configured to hold the interventional tool (40) relative to the anatomical region. The gear assembly (32) is structurally configured to translate and/or rotate the carriage (33) relative to the frame (31). The grid template (34) is structurally configured to guide one or more additional interventional tools (41) relative to the anatomical region. The frame (31), the carriage (33), the optional gear assembly (32) and the optional grid template (34) have an electromagnetic-compatible material composition for minimizing any distortion by the interventional tool stepper (30) of an electromagnetic field.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: February 14, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Shriram Sethuraman, Douglas Allen Stanton, Jochen Kruecker
  • Patent number: 11547868
    Abstract: An interventional therapy system may include at least one catheter configured for insertion within an object of interest (OOI); and at least one controller which configured to: obtain a reference image dataset including a plurality of image slices which form a three-dimensional image of the OOI; define restricted areas (RAs) within the reference image dataset; determine location constraints for the at least one catheter in accordance with at least one of planned catheter intersection points, a peripheral boundary of the OOI and the RAs defined in the reference dataset; determine at least one of a position and an orientation of the distal end of the at least one catheter; and/or determine a planned trajectory for the at least one catheter in accordance with the determined at least one position and orientation for the at least one catheter and the location constraints.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: January 10, 2023
    Assignees: KONINKLIJKE PHILIPS N.V., SUNNYBROOK RESEARCH INSTITUTE
    Inventors: Jochen Kruecker, Shyam Bharat, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Ananth Ravi, Falk Uhlemann, Thomas Erik Amthor
  • Patent number: 11109776
    Abstract: A system and method include a shape sensing enabled device (120) including one or more imaging devices (202), the shape sensing enabled device coupled to at fiber (122). A shape sensing module (132) is configured to receive optical signals from the at least one optical fiber within a structure and interpret the optical signals to determine a shape of the shape sensing enabled device. A device positioning module (134) is configured to determine position information of the one or more imaging devices based upon one or more relationships between the at least one optical fiber and the one or more imaging devices. A mapping module (136) is configured to register frames of reference of the at least one optical fiber, the shape sensing enabled device, and a mapping system of a target device (124) to provide an adjusted position of the target device based on the position information.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: September 7, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Cynthia Ming-fu Kung, Jochen Kruecker
  • Patent number: 10953242
    Abstract: An intervention system employs an interventional device (10), and a sensor wire (20) manually translatable within a lumen (11). The intervention system further employs a reconstruction controller (44) for reconstructing a shape of the interventional tool (10) responsive to a sensing of a manual translation of the sensor wire (20) within the lumen (11) (e.g., a EM sensor being attached to/embedded within a guide wire), and for determining a reconstruction accuracy of a translation velocity of the sensor wire (20) within the lumen (11) to thereby facilitate an accurate reconstruction of the shape of the interventional tool (10). The reconstruction accuracy may be determined by the reconstruction controller (44) as an acceptable translation velocity being less than an acceptable threshold, an unacceptable translation velocity being greater than an unacceptable threshold, and/or a borderline translation velocity being greater than the acceptable threshold and less than the unacceptable threshold.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: March 23, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Jochen Kruecker, Ananth Ravi, Niranjan Venugopal
  • Publication number: 20210060357
    Abstract: The invention relates to a determination apparatus for determining the pose and shape of an introduction element like a catheter within a living being, wherein the introduction element is adapted to be used by a therapy apparatus for introducing a energy source close to a target object to be treated. A position determination element like guidewire with an electromagnetic tracking element is introduced into the introduction element such that it is arranged at different locations within the introduction element, wherein the positions of the position determination element within the introduction element are determined. The determined positions are then acquired depending on the determined positions for determining the pose and shape of the introduction element within the living being. This can lead to a determination procedure with reduced user interaction, thereby simplifying the determination procedure for the user.
    Type: Application
    Filed: November 11, 2020
    Publication date: March 4, 2021
    Inventors: SHYAM BHARAT, EHSAN DEHGHAN MARVAST, JOCHEN KRUECKER, CYNTHIA MING-FU KUNG
  • Patent number: 10843007
    Abstract: A determination apparatus determines the pose and shape of an introduction element like a catheter within a living being, wherein the introduction element is adapted to be used by a brachytherapy apparatus for introducing a radiation source close to a target object to be treated. A position determination element like a guidewire with an electromagnetic tracking element is introduced into the introduction element such that it is arranged at different locations within the introduction element, wherein the positions of the position determination element within the introduction element are determined. The determined positions are then acquired depending on the determined positions for determining the pose and shape of the introduction element within the living being. This can lead to a determination procedure with reduced user interaction, thereby simplifying the determination procedure for the user.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: November 24, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Jochen Kruecker, Cynthia Ming-fu Kung
  • Patent number: 10816585
    Abstract: An electromagnetic field quality assurance system employing an electromagnetic field generator (10) for emitting an electromagnetic field (12), and one or more quality assurance electromagnetic sensors (11, 21, 31, 41, 50) for sensing the emission of the electromagnetic field (12). The system further employs a quality assurance controller (74) for assessing a tracking quality of the electromagnetic field (12) derived from a monitoring of a sensed position of each quality assurance electromagnetic sensor (11, 21, 31, 41, 50) within a field-of-view of the electromagnetic field (12). The electromagnetic field generator (10), an ultrasound probe (20), an ultrasound stepper (30) and/or a patient table (40) may be equipped with the quality assurance electromagnetic sensor(s) (11, 21, 31, 41, 50).
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: October 27, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ehsan Dehghan Marvast, Shyam Bharat, Amir Mohammad Tahmasebi Maraghoosh, Sandeep M Dalal, Jochen Kruecker, Cynthia Ming-Fu Kung, Niranjan Venugopal, Ananth Ravi
  • Patent number: 10786310
    Abstract: An electromagnetic (“EM”) tracking configuration system employs an EM quality assurance (“EMQA”) (30) and EM data coordination (“DC”) system (70). For the EMQA system (30), an EM sensor block (40) includes EM sensor(s) (22) positioned and oriented to represent a simulated electromagnetic tracking of interventional tool(s) inserted through electromagnetic sensor block (40) into an anatomical region. As an EM field generator (20) generates an EM field (21) encircling EM sensor(s) (22), an EMQA workstation (50) tests an EM tracking accuracy of an insertion of the interventional tool(s) through the EM sensor block (40) into the anatomical region.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 29, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Amir Mohammad Tahmasebi Maraghoosh, Sandeep M. Dalal, Jochen Kruecker, Antonio Bonillas Vaca, Douglas Allen Stanton
  • Patent number: 10653320
    Abstract: A volume mapping instrument (20), deployable within a partially or a completely enclosed anatomical volume, employs one or more medical tools (40) with each medical tool (40) being transitional between a deployable structural configuration to orderly position each medical tool (40) within the anatomical volume and a mapping structural configuration to anchor the medical tool (40) against the boundary of the anatomical volume. The volume mapping instrument (20) further employs an optical shape sensor (30) to generate one or more encoded optical signals indicative of a shape of the boundary of the anatomical volume in response to each medical tool (40) being transitioned from the deployable structural configuration to the mapping structural configuration within the anatomical volume. Based on the encoded optical signal(s), a volume mapping module (51) is utilized to map a portion or an entirety of the boundary of the anatomical volume.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 19, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Karen Irene Trovato, Raymond Chan, Robert Manzke, Cynthia Ming-fu Kung, Bharat Ramachandran, Laurent Verard
  • Patent number: 10549123
    Abstract: The invention relates to an assisting apparatus for assisting in performing brachytherapy. The position of an introduction element (17) like a catheter is tracked particularly by using electromagnetic tracking, while a group of seeds is introduced into a living object (2). This provides a rough knowledge about the position of the seeds within the object. An ultrasound image showing the group is generated depending on the tracked position of the introduction element and, thus, depending on the rough knowledge about the position of the seeds, in order to optimize the ultrasound visualization with respect to showing the introduced seeds. Based on this optimized ultrasound visualization the position of a seed of the group is determined, thereby allowing for an improved determination of seed positions and correspondingly for an improved brachytherapy performed based on the determined positions.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: February 4, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Ehsan Dehghan Marvast, Amir Mohammad Tahmasebi Maraghoosh, Shyam Bharat, Sandeep M. Dalal, Cynthia Ming-fu Kung, Jochen Kruecker
  • Patent number: 10506947
    Abstract: A system for selecting a calibration includes a data structure (138) including non-transitory computer readable storage media having a plurality of calibration entries stored therein and indexed to position and/or orientation criteria for a field generator. The field generator is configured for placement in an environment for sensor tracking. A calibration selection module (140) is configured to determine a position and/or orientation of the field generator and, based on the position and/or orientation, determine, using the data structure, corresponding calibration information stored in the data structure. The calibration information is optimized based upon the position and/or orientation of the field generator.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 17, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Ananth Ravi, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Jochen Kruecker
  • Patent number: 10426974
    Abstract: The generation of a pattern and for an adaptation to the specific geometry requires a lot of manual work. The workflow for the clinician is simplified during treatment planning. A treatment planning system is configured for determining a set of catheter or needle insertion positions to be used during treatment. The treatment planning system includes an image providing module for providing a medical image from which at least one treatment target structure can be derived. Further the treatment planning system includes a pattern providing module for providing one or a set of standard patterns for catheter or needle insertion including a plurality of catheter or needle insertion positions. The catheter or needle positions relate to treatment positions in the at least one treatment target structure.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: October 1, 2019
    Assignees: KONINKLIJKE PHILIPS N.V., SUNNYBROOK RESEARCH INSTITUTE (SRI)
    Inventors: Thomas Erik Amthor, Falk Uhlemann, SHyam Bharat, Ehsan Dehghan Marvast, Cynthia Ming-Fu Kung, Ananth Ravi, Jochen Kruecker
  • Patent number: 10413749
    Abstract: A brachytherapy seed localization system for localizing radioactive seeds within a diseased tissue, the brachytherapy seed localization system employs a tool tracking machine (50) for generating a tracked seed distribution map (51) of delivered locations of the radioactive seeds within the diseased tissue, and a tissue imaging machine (60) for generating a seed distribution image (61) of projected locations of the radioactive seeds within the diseased tissue including at least one false projected location. The brachytherapy seed localization system further employs a brachytherapy seed localizer (70) for generating a composite seed distribution map (71) of estimated locations of the radioactive seeds within the diseased tissue derived from a combination of the tracked seed distribution map (51) and the seed distribution image (61) excluding any false projected location(s) within the seed distribution image (61).
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: September 17, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jochen Kruecker, Ehsan Dehghan Marvast, Shyam Bharat, Cynthia Ming-Fu Kung
  • Patent number: 10369384
    Abstract: A grid calibration system employing interventional equipment including one or more interventional tools (23), a grid (22) having a hole matrix for supporting and guiding the interventional tool(s) (23) within a calibration area, and an imaging device (24) positioned relative to the grid (22) for generating a tool image illustrative of the interventional tool(s) (23) within the calibration area. The grid calibration system further employs a grid calibration workstation (40) for displaying any alignment adjustments to the relative positioning of the grid (22) and the imaging device (24) as derived from an image registration of the tool image and a virtual grid having a point matrix representative of the hole matrix of the grid.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: August 6, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cynthia Ming-Fu Kung, Shyam Bharat
  • Patent number: 10290098
    Abstract: An interventional therapy system may include at least one controller which may obtain a reference image dataset of an object of interest (OOI); segment the reference image dataset to determine peripheral outlines of the OOI in the plurality image slices; acquire a current image of the OOI using an ultrasound probe; select a peripheral outline of a selected image slice of the plurality of slices of the reference image dataset which is determined to correspond to the current image; and/or modify the selected peripheral outline of the image slice of the plurality of slices of the reference image dataset in accordance with at least one deformation vector.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 14, 2019
    Assignees: Koninklijke Philips N.V., Sunnybrook Research Institute
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Jochen Kruecker, Ananth Ravi, Falk Uhlemann, Cynthia Ming-Fu Kung, Thomas Erik Amthor
  • Publication number: 20190083812
    Abstract: The invention relates to a determination apparatus for determining the pose and shape of an introduction element like a catheter within a living being, wherein the introduction element (12) is adapted to be used by a brachytherapy apparatus for introducing a radiation source (10) close to a target object (11) to be treated. A position determination element (27) like guidewire (20) with an electromagnetic tracking element (16) is introduced into the introduction element (12) such that it is arranged at different locations within the introduction element (12), wherein the positions of the position determination element (27) within the introduction element (12) are determined. The determined positions are then acquired depending on the determined positions for determining the pose and shape of the introduction element within the living being. This can lead to a determination procedure with reduced user interaction, thereby simplifying the determination procedure for the user.
    Type: Application
    Filed: November 14, 2018
    Publication date: March 21, 2019
    Inventors: Shyam BHARAT, Ehsan Dehghan Marvast, Jochen Kruecker, Cynthia Ming-fu Kung
  • Patent number: 10143852
    Abstract: The invention relates to a determination apparatus for determining the pose and shape of an introduction element like a catheter within a living being, wherein the introduction element is adapted to be used by a brachytherapy apparatus for introducing a radiation source close to a target object to be treated. A position determination element like guidewire with an electromagnetic tracking element is introduced into the introduction element such that it is arranged at different locations within the introduction element, wherein the positions of the position determination element within the introduction element are determined. The determined positions are then acquired depending on the determined positions for determining the pose and shape of the introduction element within the living being. This can lead to a determination procedure with reduced user interaction, thereby simplifying the determination procedure for the user.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: December 4, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Shyam Bharat, Ehsan Dehghan Marvast, Jochen Kruecker, Cynthia Ming-fu Kung
  • Patent number: 10113889
    Abstract: A calibration system includes a channel block (102) having a plurality of channels (104) formed therein. The channels are configured to correspond to locations where treatment devices are inserted for treatment of a patient. The channels are dimensioned to restrict motion of the treatment devices. A tracking system (128) is configured to monitor a position of a treatment device (108) inserted in one or more of the channels. The tracking system is configured to generate tracking data for the at least one treatment device for comparison with an expected position for the treatment device.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: October 30, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Jochen Kruecker, Shyam Bharat, Cynthia Ming-Fu Kung
  • Patent number: 10064569
    Abstract: A device, system and method for accessing internal tissue include a probe (108) disposed on a distal end portion of a medical device and configured to be inserted into a body along a trajectory path. A sensor (102) is mounted on a displacement tracker portion (104) of the medical device which is disposed on a proximal end portion of the device. The sensor is configured to measure a distance parallel to the probe between the displacement tracker portion and a tissue surface such that a position of the probe is determinable relative to the tissue surface upon advance or retraction of the probe along the trajectory path.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: September 4, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Sandeep M. Dalal, Cynthia Ming-Fu Kung, Shriram Sethuraman, Jochen Kruecker