Patents by Inventor Cynthia Villanueva

Cynthia Villanueva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903878
    Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: February 20, 2024
    Assignee: AMO Development, LLC
    Inventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
  • Publication number: 20230181368
    Abstract: An ophthalmic surgical laser system and method for forming a lenticule in a subject's eye using “fast-scan-slow-sweep” scanning scheme. A high frequency scanner forms a fast scan line, which is placed by the XY and Z scanners at a location tangential to a parallel of latitude of the surface of the lenticule. The XY and Z scanners then move the scan line in a slow sweep trajectory along a meridian of longitude of the surface of the lenticule in one sweep. Multiple sweeps are performed along different meridians to form the entire lenticule surface, and a prism is used to change the orientation of the scan line of the high frequency scanner between successive sweeps. In each sweep, within a central area of the lenticule where the sweeps overlap, the laser is periodically blanked (or delivered with significantly reduced pulse energy) to reduce the total energy delivered in that area.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 15, 2023
    Inventors: Cynthia Villanueva, Deepali Mehta-Hurt, Hong Fu, Jiandong Xu, Alireza Malek Tabrizi, Griffith Altmann
  • Publication number: 20220175581
    Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 9, 2022
    Inventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
  • Publication number: 20220054316
    Abstract: In laser-assisted corneal lenticule extraction procedures, the lenticule incision profile includes anterior and posterior lenticule incisions, with one or more of the following features: plano transition zone outside the optical zone, to improve mating of anterior and posterior incision surfaces after lenticule extraction; shallow arcuate incisions above the anterior incision and near the lenticule edge, to improve surface mating; separate ring cut intersecting the anterior and posterior incisions in the transition zone, to reduce tissue bridges and minimize tear at the lenticule edges and facilitate easy lenticule extraction; larger posterior incision, which includes a pocket zone outside the lenticule edge, for better surface mating and bubble management during cutting; and a separate ring shaped pocket cut intersecting the pocket zone of the posterior incision, for bubble management.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 24, 2022
    Inventors: Andrew Voorhees, Alireza Malek Tabrizi, Hong Fu, Cynthia Villanueva, Nima Khatibzadeh, Deepali Mehta-Hurt, James Hill, Li Chen, Li Bing
  • Publication number: 20210202062
    Abstract: A motor position compensation method for an ophthalmic surgical laser system employs a deep artificial neural network to characterize motor following errors of the motors of the system. The artificial neural network is trained using a large number of commanded motor positions and corresponding measured actual motor positions (measured by encoders associated with the motors) as training data, to obtain a trained artificial neural network that can predict the actual motor position for any commanded motor position. Before executing a treatment scan, the original commanded motor positions calculated from the intended scan pattern are inputted to the trained artificial neural network to predict the actual motor positions, and the predicted actual motor positions are used to adjust the original commanded motor positions. The adjusted commanded motor positions are then used to perform the treatment scan, which produces an actual scan pattern that more closely match the intended scan pattern.
    Type: Application
    Filed: November 23, 2020
    Publication date: July 1, 2021
    Inventors: Paul Gray, Cynthia Villanueva, Guangming Dai