Patents by Inventor Cyril Cabral, Jr.

Cyril Cabral, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7378338
    Abstract: In an interconnect structure of an integrated circuit, a diffusion barrier film in a damascene structure is formed of a film having the composition TaNx, where x is greater than 1.2 and with a thickness of 0.5 to 5 nm.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: May 27, 2008
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Steffen K. Kaldor, Hyungjun Kim, Stephen M. Rossnagel
  • Patent number: 7368045
    Abstract: A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: May 6, 2008
    Assignee: International Business Machines Corporation
    Inventors: Philippe M. Vereecken, Veeraraghavan S. Basker, Cyril Cabral, Jr., Emanuel I. Cooper, Hariklia Deligianni, Martin M. Frank, Rajarao Jammy, Vamsi Krishna Paruchuri, Katherine L. Saenger, Xiaoyan Shao
  • Patent number: 7326610
    Abstract: Silicide is introduced into the gate region of a CMOS device through different process options for both conventional and replacement gate types processes. Placement of silicide in the gate itself, introduction of the silicide directly in contact with the gate dielectric, introduction of the silicide as a fill on top of a metal gate all ready in place, and introduction the silicide as a capping layer on polysilicon or on the existing metal gate, are presented. Silicide is used as an option to connect between PFET and NFET devices of a CMOS structure. The processes protect the metal gate while allowing for the source and drain silicide to be of a different silicide than the gate silicide. A semiconducting substrate is provided having a gate with a source and a drain region. A gate dielectric layer is deposited on the substrate, along with a metal gate layer. The metal gate layer is then capped with a silicide formed on top of the gate, and conventional formation of the device then proceeds.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: February 5, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ricky S. Amos, Douglas A. Buchanan, Cyril Cabral, Jr., Evgeni P. Gousev, Victor Ku, An Steegen
  • Patent number: 7314789
    Abstract: A semiconductor structure and method that is capable of generating a local mechanical gate stress for channel mobility modification are provided. The semiconductor structure includes at least one NFET and at least one PFET on a surface of a semiconductor substrate. The at least one NFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer, a Si-containing second gate electrode layer and a compressive metal, and the at least one PFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer and a tensile metal or a silicide.
    Type: Grant
    Filed: December 30, 2006
    Date of Patent: January 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Bruce B. Doris, Thomas S. Kanarsky, Xiao H. Liu, Huilong Zhu
  • Patent number: 7282403
    Abstract: An integrated circuit is provided including an FET gate structure formed on a substrate. This structure includes a gate dielectric on the substrate, and a metal nitride layer overlying the gate dielectric and in contact therewith. This metal nitride layer is characterized as MNx, where M is one of W, Re, Zr, and Hf, and x is in the range of about 0.7 to about 1.5. Preferably the layer is of WNx, and x is about 0.9. Varying the nitrogen concentration in the nitride layer permits integration of different FET characteristics on the same chip. In particular, varying x in the WNx layer permits adjustment of the threshold voltage in the different FETs. The polysilicon depletion effect is substantially reduced, and the gate structure can be made thermally stable up to about 1000° C.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Cyril Cabral, Jr., Oleg Gluschenkov, Hyungjun Kim
  • Patent number: 7271455
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chester T. Dziobkowski, Sunfei Fang, Evgeni Gousev, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri, Ghavam G. Shahidi, Michelle L. Steen, Clement H. Wann
  • Patent number: 7271699
    Abstract: A resistor and a structure for changing an electrical resistance of a resistor. Initially, the resistor is provided, wherein the resistor has a length L and an electrical resistance R1. A portion of the resistor is exposed to a laser radiation, wherein the portion includes a fraction F of the length L of the resistor. After the resistor has been exposed to the laser radiation, the resistor has an electrical resistance R2, wherein R2 is unequal to R1.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Cyril Cabral, Jr., Daniel C. Edelstein, Anthony K. Stamper
  • Patent number: 7271486
    Abstract: A method for providing a low resistance non-agglomerated Ni monosilicide contact that is useful in semiconductor devices. Where the inventive method of fabricating a substantially non-agglomerated Ni alloy monosilicide comprises the steps of: forming a metal alloy layer over a portion of a Si-containing substrate, wherein said metal alloy layer comprises of Ni and one or multiple alloying additive(s), where said alloying additive is Ti, V, Ge, Cr, Zr, Nb, Mo, Hf, Ta, W, Re, Rh, Pd or Pt or mixtures thereof; annealing the metal alloy layer at a temperature to convert a portion of said metal alloy layer into a Ni alloy monosilicide layer; and removing remaining metal alloy layer not converted into Ni alloy monosilicide. The alloying additives are selected for phase stability and to retard agglomeration. The alloying additives most efficient in retarding agglomeration are most efficient in producing silicides with low sheet resistance.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Christophe Detavernier, James M. E. Harper, Christian Lavoie
  • Patent number: 7242055
    Abstract: A semiconductor structure is provided that includes a Vt stabilization layer between a gate dielectric and a gate electrode. The Vt stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the proviso that when the Vt stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: July 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Jr., Cyril Cabral, Jr., Eduard A. Cartier, Martin M. Frank, Evgeni P. Gousev, Supratik Guha, Paul C. Jamison, Rajarao Jammy, Vijay Narayanan, Vamsi K. Paruchuri
  • Patent number: 7223691
    Abstract: A novel interlevel contact via structure having low contact resistance and improved reliability, and method of forming the contact via. The method comprises steps of: etching an opening through an interlevel dielectric layer to expose an underlying metal (Copper) layer surface; and, performing a low energy ion implant of an inert gas (Nitrogen) into the exposed metal underneath; and, depositing a refractory liner into the walls and bottom via structure which will have a lower contact resistance due to the presence of the proceeding inert gas implantation. Preferably, the inert Nitrogen gas reacts with the underlying exposed Copper metal to form a thin layer of CuN.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: May 29, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Lawrence A. Clevenger, Timothy J. Dalton, Patrick W. DeHaven, Chester T. Dziobkowski, Sunfei Fang, Terry A. Spooner, Tsong-Lin L. Tai, Kwong Hon Wong, Chin-Chao Yang
  • Patent number: 7217655
    Abstract: A composite material comprising a layer containing copper, and an electrodeposited CoWP film on the copper layer. The CoWP film contains from 11 atom percent to 25 atom percent phosphorus and has a thickness from 5 nm to 200 nm. The invention is also directed to a method of making an interconnect structure comprising: providing a trench or via within a dielectric material, and a conducting metal containing copper within the trench or the via; and forming a CoWP film by electrodeposition on the copper layer. The CoWP film contains from 10 atom percent to 25 atom percent phosphorus and has a thickness from 5 nm to 200 nm. The invention is also directed to a interconnect structure comprising a dielectric layer in contact with a metal layer; an electrodeposited CoWP film on the metal layer, and a copper layer on the CoWP film.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: May 15, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Stefanie R. Chiras, Emanuel I. Cooper, Hariklia Deligianni, Andrew J. Kellock, Judith M. Rubino, Roger Y. Tsai
  • Patent number: 7193323
    Abstract: A composite material comprising a layer containing copper, and an electrodeposited CoWP film on the copper layer. The CoWP film contains from 11 atom percent to 25 atom percent phosphorus and has a thickness from 5 nm to 200 nm. The invention is also directed to a method of making an interconnect structure comprising: providing a trench or via within a dielectric material, and a conducting metal containing copper within the trench or the via; and forming a CoWP film by electrodeposition on the copper layer. The CoWP film contains from 10 atom percent to 25 atom percent phosphorus and has a thickness from 5 nm to 200 nm. The invention is also directed to a interconnect structure comprising a dielectric layer in contact with a metal layer; an electrodeposited CoWP film on the metal layer, and a copper layer on the CoWP film.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: March 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Stefanie R. Chiras, Emanuel Cooper, Hariklia Deligianni, Andrew J. Kellock, Judith M. Rubino, Roger Y. Tsai
  • Patent number: 7183182
    Abstract: A method of fabricating complementary metal oxide semiconductor (CMOS) field effect transistors which includes selective doping and full silicidation of a polysilicon material comprising the gate electrode of the transistor. In one embodiment, prior to silicidation, the polysilicon is amorphized. In a further embodiment, siliciding is performed at a low substrate temperature.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: February 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Meikei Ieong, Jakub T. Kedzierski
  • Patent number: 7176116
    Abstract: A field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the FETs. The FETs have a device channel and a gate above the device channel with a doped source/drain extension at said each end of the thin channel. A portion of a low resistance material layer (e.g., a silicide layer) is disposed on source/drain extensions. The portions on the doped extensions laterally form a direct contact with the doped source/drain extension. Any low resistance material layer on the gate is separated from the low resistance material portions on the source/drain extensions.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Omer H. Dokumaci, Oleg Gluschenkov
  • Patent number: 7173312
    Abstract: A semiconductor structure and method that is capable of generating a local mechanical gate stress for channel mobility modification are provided. The semiconductor structure includes at least one NFET and at least one PFET on a surface of a semiconductor substrate. The at least one NFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer, a Si-containing second gate electrode layer and a compressive metal, and the at least one PFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer and a tensile metal or a silicide.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Bruce B. Doris, Thomas S. Kanarsky, Xiao H. Liu, Huilong Zhu
  • Patent number: 7151023
    Abstract: A MOSFET structure and method of forming is described. The method includes forming a metal-containing layer that is thick enough to fully convert the semiconductor gate stack to a semiconductor metal alloy in a first MOSFET type region but only thick enough to partially convert the semiconductor gate stack to a semiconductor metal alloy in a second MOSFET type region. In one embodiment, the gate stack in a first MOSFET region is recessed prior to forming the metal-containing layer so that the height of the first MOSFET semiconductor stack is less than the height of the second MOSFET semiconductor stack. In another embodiment, the metal-containing layer is thinned over one MOSFET region relative to the other MOSFET region prior to the conversion process.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: December 19, 2006
    Assignee: International Business Machines Corporation
    Inventors: Hasan M. Nayfeh, Mahender Kumar, Sunfei Fang, Jakub T Kedzierski, Cyril Cabral, Jr.
  • Patent number: 7122472
    Abstract: A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device having a first well region in a semiconductor substrate, first source/drain silicide areas in the first well region, and a first type gate isolated from the first source/drain silicide areas; forming a second type semiconductor device having a second well region in the semiconductor substrate, second source/drain silicide areas in the second well region, and a second type gate isolated from the second source/drain silicide areas; selectively forming a first metal layer over the second type semiconductor device; performing a first fully silicided (FUSI) gate formation on only the second type gate; depositing a second metal layer over the first and second type semiconductor devices; and performing a second FUSI gate formation on only the first type gate.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: October 17, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Cyril Cabral, Jr., Chester T. Dziobkowski, Christian Lavoie, Clement H. Wann
  • Patent number: 7112851
    Abstract: Disclosed is a method for making a metal gate for a FET, wherein the metal gate comprises at least some material deposited by electroplating as well as an FET device comprising a metal gate that is at least partially plated. Further disclosed is a method for making a metal gate for a FET wherein the metal gate comprises at least some plated material and the method comprises the steps of: selecting a substrate having a top surface and a recessed region; conformally depositing a thin conductive seed layer on the substrate; and electroplating a filler gate metal on the seed layer to fill and overfill the recessed region.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: September 26, 2006
    Assignee: International Business Machines Corporation
    Inventors: Katherine L. Saenger, Cyril Cabral, Jr., Hariklia Deligianni, Caliopi Andricacos, legal representative, Philippe M. Vereecken, Emanuel I. Cooper, Panayotis C. Andricacos, deceased
  • Patent number: 7112481
    Abstract: A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: September 26, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Cyril Cabral, Jr., Chester T. Dziobkowski, John J. Ellis-Monaghan, Christian Lavoie, Zhijiong Luo, James S. Nakos, An L. Steegen, Clement H. Wann
  • Patent number: 7105889
    Abstract: A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprising an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be AlN or AlOxNy. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HCl/H2O2 peroxide solution.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: September 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Jr., Cyril Cabral, Jr., Eduard A. Cartier, Matthew W. Copel, Martin M. Frank, Evgeni P. Gousev, Supratik Guha, Rajarao Jammy, Vijay Narayanan, Vamsi K. Paruchuri