Patents by Inventor Cyrus Bamji

Cyrus Bamji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10917626
    Abstract: An active illumination range camera operable to determine distances to features in a scene, and comprising an illumination system and imaging system simultaneously controllable to provide a FOI and a FOV that coincide at, and are substantially coextensive with, a region of interest (ROI) in a portion of the scene and track the ROI as it moves.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: February 9, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Onur Can Akkaya, Arrigo Benedetti, Cyrus Bamji
  • Patent number: 10705214
    Abstract: An optical projector comprises a collimated light source, a pattern generating optical element, and a variable optical element positioned optically between the collimated light source and the pattern generating optical element. The variable optical element is configured to adjust a divergence of a light beam incident on the pattern generating optical element. The pattern generating optical element is configured to emit patterned light when the variable optical element is in a first state, and to emit non-patterned light when the variable optical element is in a second state.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: July 7, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Onur Can Akkaya, Cyrus Bamji
  • Patent number: 10592753
    Abstract: The described implementations relate to managing depth cameras. One example can include a depth camera that includes an emitter for illuminating light on a scene and a sensor for sensing light reflected from the scene. The example can also include a resource-conserving camera control component configured to determine when the scene is static by comparing captures and/or frames of the scene from the sensor. The resource-conserving camera control component can operate the depth camera in resource constrained modes while the scene remains static.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: March 17, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Sergio Ortiz Egea, Onur C. Akkaya, Cyrus Bamji
  • Patent number: 10453877
    Abstract: A CMOS detector with pairs of interdigitated elongated finger-like collection gates includes p+ implanted regions that create charge barrier regions that can intentionally be overcome. These regions steer charge to a desired collection gate pair for collection. The p+ implanted regions may be formed before and/or after formation of the collection gates. These regions form charge barrier regions when an associated collection gate is biased low. The barriers are overcome when an associated collection gate is high. These barrier regions steer substantially all charge to collection gates that are biased high, enhancing modulation contrast. Advantageously, the resultant structure has reduced power requirements in that inter-gate capacitance is reduced in that inter-gate spacing can be increased over prior art gate spacing and lower swing voltages may be used. Also higher modulation contrast is achieved in that the charge collection area of the low gate(s) is significantly reduced.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: October 22, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventor: Cyrus Bamji
  • Patent number: 10412280
    Abstract: A camera includes a sensor array including a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over a broad wavelength band. Covering the sensor array is a light valve switchable electronically between closed and open states. The light valve is configured to, in the closed state, block light of a stopband and transmit light outside the stopband, and, in the open state, transmit the light of the stopband. An electronic controller of the camera is configured to switch the light valve from the closed to the open state and, synchronously with switching the light valve, address the sensor elements of the sensor array.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: September 10, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Onur Can Akkaya, Cyrus Bamji, Arrigo Benedetti, Michael S. Fenton, Jayachandra Gullapalli
  • Publication number: 20190018137
    Abstract: An optical projector comprises a collimated light source, a pattern generating optical element, and a variable optical element positioned optically between the collimated light source and the pattern generating optical element. The variable optical element is configured to adjust a divergence of a light beam incident on the pattern generating optical element. The pattern generating optical element is configured to emit patterned light when the variable optical element is in a first state, and to emit non-patterned light when the variable optical element is in a second state.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 17, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Onur Can AKKAYA, Cyrus BAMJI
  • Patent number: 10134926
    Abstract: A time-of-flight detector includes a semiconductor layer and a light modulation structure. The semiconductor layer is configured to translate light radiation into electrical charge. The light modulation structure is configured to increase a path of interaction of light radiation through the semiconductor layer. In some example implementations, the light modulation structure is configured to deflect at least some light radiation at an increased angle through the semiconductor layer. In some example implementations, the light modulation structure is configured to reflect light radiation more than once through the semiconductor layer.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 20, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Onur Can Akkaya, Satyadev Nagaraja, Tamer Elkhatib, Cyrus Bamji, Swati Mehta
  • Patent number: 10113868
    Abstract: TOF system optical power is augmented using auxiliary optical emitter unit(s) that may be a wireless (WOE), or a plug-wired (PWOE). WOE units sense emitted TOF system optical energy Sout and emit optical energy Sout-n preferably dynamically synchronized in frequency and in phase to Sout as received by the WOE. Each WOE includes at least one optical sensor to detect Sout, and internal feedback ensuring that frequency and phase of the WOE emitted Sout-n optical energy are dynamically synchronized with frequency and phase of the TOF emitted Sout optical energy. PWOE units need no internal feedback but are calibrated by the TOF system to cause a close match between frequency and phase of the PWOE-emitted optical energy with what would be emitted by the TOF system primary optical source. If PWOE(s) are used in isolation, delay difference between PWOE and the TOF primary optical energy source can be software-compensated.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: October 30, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventor: Cyrus Bamji
  • Publication number: 20180146186
    Abstract: An active illumination range camera operable to determine distances to features in a scene, and comprising an illumination system and imaging system simultaneously controllable to provide a FOI and a FOV that coincide at, and are substantially coextensive with, a region of interest (ROI) in a portion of the scene and track the ROI as it moves.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 24, 2018
    Inventors: Onur Can Akkaya, Arrigo Benedetti, Cyrus Bamji
  • Patent number: 9923003
    Abstract: A CMOS time-of-flight image sensor must be robust to interface traps and fixed charges which may be present due to fabrication and which may cause an undesired induced electric field in the silicon substrate. This undesired induced electrical field is reduced by introducing a hydrogen-enriched dielectric material. Further remedial techniques can include applying ultraviolet light and/or performing a plasma treatment. Another possible approach adds a passivation doping layer at a top of the detector as a shield against the undesired induced electric field. One or more of the above techniques can be used to prevent any unstable behavior of the time-of-flight sensor.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 20, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Tamer Elkhatib, Vei-Han Chan, William Qian, Onur Can Akkaya, Swati Mehta, Cyrus Bamji
  • Publication number: 20170230551
    Abstract: A camera includes a sensor array including a plurality of individually addressable sensor elements, each of the plurality of sensor elements responsive to incident light over a broad wavelength band. Covering the sensor array is a light valve switchable electronically between closed and open states. The light valve is configured to, in the closed state, block light of a stopband and transmit light outside the stopband, and, in the open state, transmit the light of the stopband. An electronic controller of the camera is configured to switch the light valve from the closed to the open state and, synchronously with switching the light valve, address the sensor elements of the sensor array.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 10, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Onur Can Akkaya, Cyrus Bamji, Arrigo Benedetti, Michael S. Fenton, Jayachandra Gullapalli
  • Patent number: 9681123
    Abstract: A method to calibrate an imaging array of a time-of-flight depth camera includes the act of modulating emission from a light source of the camera while synchronously biasing the imaging array. In this method, the modulated emission reflects from a compact reflector positioned a known distance from the camera and passes through an optical diffuser en route to the imaging array. For each pixel of the imaging array, a correction term is stored, which brings the output from that pixel into agreement with the actual distance between the camera and the compact reflector.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: June 13, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Travis Perry, Cyrus Bamji, Mike Fenton, Karen Cheng, Michael Anthony Hall
  • Publication number: 20170148830
    Abstract: A CMOS detector with pairs of interdigitated elongated finger-like collection gates includes p+ implanted regions that create charge barrier regions that can intentionally be overcome. These regions steer charge to a desired collection gate pair for collection. The p+ implanted regions may be formed before and/or after formation of the collection gates. These regions form charge barrier regions when an associated collection gate is biased low. The barriers are overcome when an associated collection gate is high. These barrier regions steer substantially all charge to collection gates that are biased high, enhancing modulation contrast. Advantageously, the resultant structure has reduced power requirements in that inter-gate capacitance is reduced in that inter-gate spacing can be increased over prior art gate spacing and lower swing voltages may be used. Also higher modulation contrast is achieved in that the charge collection area of the low gate(s) is significantly reduced.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 25, 2017
    Inventor: Cyrus Bamji
  • Patent number: 9595550
    Abstract: A CMOS detector with pairs of interdigitated elongated finger-like collection gates includes p+ implanted regions that create charge barrier regions that can intentionally be overcome. These regions steer charge to a desired collection gate pair for collection. The p+ implanted regions may be formed before and/or after formation of the collection gates. These regions form charge barrier regions when an associated collection gate is biased low. The barriers are overcome when an associated collection gate is high. These barrier regions steer substantially all charge to collection gates that are biased high, enhancing modulation contrast. Advantageously, the resultant structure has reduced power requirements in that inter-gate capacitance is reduced in that inter-gate spacing can be increased over prior art gate spacing and lower swing voltages may be used. Also higher modulation contrast is achieved in that the charge collection area of the low gate(s) is significantly reduced.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: March 14, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Cyrus Bamji
  • Publication number: 20170005124
    Abstract: A CMOS time-of-flight image sensor must be robust to interface traps and fixed charges which may be present due to fabrication and which may cause an undesired induced electric field in the silicon substrate. This undesired induced electrical field is reduced by introducing a hydrogen-enriched dielectric material. Further remedial techniques can include applying ultraviolet light and/or performing a plasma treatment. Another possible approach adds a passivation doping layer at a top of the detector as a shield against the undesired induced electric field. One or more of the above techniques can be used to prevent any unstable behavior of the time-of-flight sensor.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Tamer Elkhatib, Vei-Han Chan, William Qian, Onur Can Akkaya, Swati Mehta, Cyrus Bamji
  • Patent number: 9497440
    Abstract: An imager includes an emitter, an array of pixel elements, and driver logic. The emitter releases bursts of light pulses with pauses between bursts. Each element of the array has a finger gate biasable to attract charge to the surface, a reading node to collect the charge, and a transfer gate to admit such charge to the reading node and to deter such charge from being absorbed into the finger gate. The driver logic biases the finger gates with the modulated light pulses such that the finger gates of adjacent first and second elements cycle with unequal phase into and out of a charge-attracting state. To reduce the effects of ambient light on the imager, the driver logic is configured to bias the transfer gates so that the charge is admitted to the reading node only during the bursts and is prevented from reaching the reading node during the pauses.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: November 15, 2016
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Cyrus Bamji, Tamer Elkhatib, Swati Mehta, Zhanping Xu
  • Patent number: 9442186
    Abstract: Embodiments disclosed herein are directed to time-of-flight (TOF) systems, and methods for use therewith, that substantially reduce interference that the TOF system may cause to at least one other system that is configured to wirelessly receive and respond to IR light signals. Some such embodiments involve emitting IR light having a low frequency (LF) power envelope that is shaped to substantially reduce frequency content within at least one frequency range known to be used by at least one other system that may be in close proximity to the TOF system. Such embodiments can also involve detecting at least a portion of the emitted RF modulated IR light that has reflected off one or more objects. A TOF system can produce depth images in dependence on results of the detecting, as well as update an application in dependence on the depth images.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: September 13, 2016
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Andrew Payne, Cyrus Bamji, Dawson Yee, Barry Thompson, Zhanping Xu, Brock Roland, Larry Prather, Travis Perry, Mike Fenton, Sunil Acharya, Algird Gudaitis, Matthew Morris
  • Publication number: 20160225812
    Abstract: A CMOS image sensor pixel has an integrated shallow trench isolation structure, resulting in higher optical sensitivity in general, and specifically for long wavelengths (red, near infrared, infrared). The shallow trench isolation structure acts as an optical grating that reflects and diffracts light so that an increased optical energy (photo generation) is observed in the photosensitive semiconductor layer of the pixel. An increase in dark current is avoided by passivating the shallow trench isolation structure with dopant which was implanted within the photosensitive semiconductor layer. Annealing in a standard CMOS process causes the dopant to diffuse toward the shallow trench isolation structure. The pixel can be configured as a time-of-flight sensor. The shallow trench isolation structure acts as a physical barrier for electrical charge motion, resulting in a higher modulation contrast pixel. Further, front side or backside illumination can be used.
    Type: Application
    Filed: June 30, 2015
    Publication date: August 4, 2016
    Inventors: Tamer Elkhatib, Onur Can Akkaya, Swati Mehta, Cyrus Bamji
  • Publication number: 20160225922
    Abstract: A time-of-flight detector includes a semiconductor layer and a light modulation structure. The semiconductor layer is configured to translate light radiation into electrical charge. The light modulation structure is configured to increase a path of interaction of light radiation through the semiconductor layer. In some example implementations, the light modulation structure is configured to deflect at least some light radiation at an increased angle through the semiconductor layer. In some example implementations, the light modulation structure is configured to reflect light radiation more than once through the semiconductor layer.
    Type: Application
    Filed: June 30, 2015
    Publication date: August 4, 2016
    Inventors: Onur Can Akkaya, Satyadev Nagaraja, Tamer Elkhatib, Cyrus Bamji, Swati Mehta
  • Publication number: 20150288955
    Abstract: A method to calibrate an imaging array of a time-of-flight depth camera includes the act of modulating emission from a light source of the camera while synchronously biasing the imaging array. In this method, the modulated emission reflects from a compact reflector positioned a known distance from the camera and passes through an optical diffuser en route to the imaging array. For each pixel of the imaging array, a correction term is stored, which brings the output from that pixel into agreement with the actual distance between the camera and the compact reflector.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 8, 2015
    Applicant: Microsoft Corporation
    Inventors: Travis Perry, Cyrus Bamji, Mike Fenton, Karen Cheng, Michael Anthony Hall