Patents by Inventor D. Geoffrey Vince
D. Geoffrey Vince has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8630492Abstract: A system and method are provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. In one embodiment, the computing device includes a plurality of applications operating thereon that are used to (I) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e., another IVUS image), (iii) identify a border on the second IVUS image, and (iv) adjust the border on the second IVUS image in accordance with at least one factor.Type: GrantFiled: July 31, 2012Date of Patent: January 14, 2014Assignee: The Cleveland Clinic FoundationInventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
-
Publication number: 20140012134Abstract: A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter and/or substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. The backscattered ultrasound data is used, together with an algorithm, to estimate at least one transfer function. The transfer function(s) can then be used (at least in a preferred embodiment) to calculate response data for the vascular tissue (i.e., the tissue component of the backscattered ultrasound data). The response data and histology data are then used to characterize at least a portion of the vascular tissue (e.g., identify tissue type, etc.). In some embodiments, the backscattered data is acquired during a cyclical portion of the heartbeat data so that the blood vessel can be analyzed or imaged as if it were standing still, or not expanding and relaxing.Type: ApplicationFiled: May 28, 2013Publication date: January 9, 2014Applicants: Cleveland Clinic Foundation, Volcano CorporationInventors: Anuja Nair, Barry D. Kuban, D. Geoffrey Vince, Jon D. Klingensmith
-
Patent number: 8622910Abstract: A system and method is provided for substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. Specifically, a data-gathering device is adapted to acquire heartbeat data and blood-vessel data from a heart-monitoring device and a data-gathering probe, respectively. In a preferred embodiment of the present invention, the blood-vessel data is acquired during a cyclical portion of the heartbeat data. By identifying a cyclical (or commonly reoccurring) portion of the heartbeat data and acquiring blood-vessel data during this cyclical portion (or during an interval that substantially corresponds thereto), the blood vessel can be analyzed as if it were standing still—i.e., not expanding and relaxing. In one embodiment of the present invention, the heart-monitoring device includes an EKG device, the data-gathering device includes an intra-vascular ultrasound (IVUS) device and a computing device, and the data-gathering probe includes at least one transducer.Type: GrantFiled: April 19, 2011Date of Patent: January 7, 2014Assignee: The Cleveland Clinic FoundationInventors: Barry D. Kuban, Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair
-
Patent number: 8449465Abstract: A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter and/or substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. In one embodiment, a computing device and catheter acquire RF backscattered data from a vascular structure. The backscattered ultrasound data is then used to estimate at least one transfer function. The transfer function(s) can then be used to calculate response data for the vascular tissue. Another embodiment includes an IVUS console connected to a catheter and a computing device that acquires RF backscattered data from a vascular structure. Based on the backscattered data, the computing device estimates the catheter's transfer function and to calculate response data for the vascular tissue. The response data and histology data are then used to characterize at least a portion of the vascular tissue.Type: GrantFiled: October 14, 2006Date of Patent: May 28, 2013Assignees: Cleveland Clinic Foundation, Volcano CorporationInventors: Anuja Nair, Barry D. Kuban, D. Geoffrey Vince, Jon D. Klingensmith
-
Publication number: 20130028497Abstract: A system and method are provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. In one embodiment, the computing device includes a plurality of applications operating thereon that are used to (I) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e., another IVUS image), (iii) identify a border on the second IVUS image, and (iv) adjust the border on the second IVUS image in accordance with at least one factor.Type: ApplicationFiled: July 31, 2012Publication date: January 31, 2013Applicant: VOLCANO CORPORATIONInventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
-
Patent number: 8303503Abstract: A system and method is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, in one embodiment of the present invention, an ultrasonic device is used to acquire RF backscattered data (i.e., IVUS data) from a blood vessel. The IVUS data is then transmitted to a computing device and used to create an IVUS image. The blood vessel is then cross-sectioned and used to identify its tissue type and to create a corresponding image (i.e., histology image). A region of interest (ROI), preferably corresponding to the identified tissue type, is then identified on the histology image. The computing device, or more particularly, a characterization application operating thereon, is then adapted to identify a corresponding region on the IVUS image. To accurately match the ROI, however, it may be necessary to warp or morph the histology image to substantially fit the contour of the IVUS image.Type: GrantFiled: June 1, 2006Date of Patent: November 6, 2012Assignee: The Cleveland Clinic FoundationInventors: Anuja Nair, D. Geoffrey Vince, Jon D. Klingensmith, Barry D. Kuban
-
Patent number: 8233718Abstract: A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e.Type: GrantFiled: June 7, 2011Date of Patent: July 31, 2012Assignee: The Cleveland Clinic FoundationInventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
-
Publication number: 20110235892Abstract: A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e.Type: ApplicationFiled: June 7, 2011Publication date: September 29, 2011Applicant: The Cleveland Clinic FoundationInventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
-
Publication number: 20110208017Abstract: A system and method is provided for substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. Specifically, a data-gathering device is adapted to acquire heartbeat data and blood-vessel data from a heart-monitoring device and a data-gathering probe, respectively. In a preferred embodiment of the present invention, the blood-vessel data is acquired during a cyclical portion of the heartbeat data. By identifying a cyclical (or commonly reoccurring) portion of the heartbeat data and acquiring blood-vessel data during this cyclical portion (or during an interval that substantially corresponds thereto), the blood vessel can be analyzed as if it were standing still—i.e., not expanding and relaxing. In one embodiment of the present invention, the heart-monitoring device includes an EKG device, the data-gathering device includes an intra-vascular ultrasound (IVUS) device and a computing device, and the data-gathering probe includes at least one transducer.Type: ApplicationFiled: April 19, 2011Publication date: August 25, 2011Inventors: Barry D. Kuban, Jon D. Klingenamith, D. Geoffrey Vince, Anuja Nair
-
Patent number: 7978916Abstract: A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e.Type: GrantFiled: April 14, 2008Date of Patent: July 12, 2011Assignee: The Cleveland Clinic FoundationInventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
-
Patent number: 7940969Abstract: A system and method is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, in one embodiment of the present invention, an ultrasonic device is used to acquire RF backscattered data (i.e., IVUS data) from a blood vessel. The IVUS data is then transmitted to a computing device and used to create an IVUS image. The blood vessel is then cross-sectioned and used to identify its tissue type and to create a corresponding image (i.e., histology image). A region of interest (ROI), preferably corresponding to the identified tissue type, is then identified on the histology image. The computing device, or more particularly, a characterization application operating thereon, is then adapted to identify a corresponding region on the IVUS image. To accurately match the ROI, however, it may be necessary to warp or morph the histology image to substantially fit the contour of the IVUS image.Type: GrantFiled: June 1, 2006Date of Patent: May 10, 2011Assignee: The Cleveland Clinic FoundationInventors: Anuja Nair, D. Geoffrey Vince, Jon D. Klingensmith, Barry D. Kuban
-
Patent number: 7927275Abstract: A system and method is provided for substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. Specifically, a data-gathering device is adapted to acquire heartbeat data and blood-vessel data from a heart-monitoring device and a data-gathering probe, respectively. In a preferred embodiment of the present invention, the blood-vessel data is acquired during a cyclical portion of the heartbeat data. By identifying a cyclical (or commonly reoccurring) portion of the heartbeat data and acquiring blood-vessel data during this cyclical portion (or during an interval that substantially corresponds thereto), the blood vessel can be analyzed as if it were standing still—i.e., not expanding and relaxing. In one embodiment of the present invention, the heart-monitoring device includes an EKG device, the data-gathering device includes an intra-vascular ultrasound (IVUS) device and a computing device, and the data-gathering probe includes at least one transducer.Type: GrantFiled: August 25, 2003Date of Patent: April 19, 2011Assignee: The Cleveland Clinic FoundationInventors: Barry D. Kuban, Jon D. Klingenamith, D. Geoffrey Vince, Anuja Nair
-
Publication number: 20110087101Abstract: A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter (including components attached thereto—e.g., IVUS console, transducer, etc.). Specifically, in accordance with a first embodiment of the present invention, a computing device is electrically connected to a catheter and used to acquire RF backscattered data from a vascular structure (e.g., a blood vessel, etc.). The backscattered ultrasound data is then used, together with an algorithm, to estimate the transfer function. The transfer function can then be used (at least in a preferred embodiment) to calculate response data for the vascular tissue (i.e., the tissue component of the backscattered ultrasound data). In a second embodiment of the present invention, an IVUS console is electrically connected to a catheter and a computing device and is used to acquire RF backscattered data from a vascular structure.Type: ApplicationFiled: September 9, 2010Publication date: April 14, 2011Applicant: Volcano CorporationInventors: Anuja Nair, D. Geoffrey Vince, Jon D. Klingensmith, Barry D. Kuban
-
Patent number: 7899224Abstract: A system and method is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, in one embodiment of the present invention, an ultrasonic device is used to acquire RF backscattered data (i.e., IVUS data) from a blood vessel. The IVUS data is then transmitted to a computing device and used to create an IVUS image. The blood vessel is then cross-sectioned and used to identify its tissue type and to create a corresponding image (i.e., histology image). A region of interest (ROI), preferably corresponding to the identified tissue type, is then identified on the histology image. The computing device, or more particularly, a characterization application operating thereon, is then adapted to identify a corresponding region on the IVUS image. To accurately match the ROI, however, it may be necessary to warp or morph the histology image to substantially fit the contour of the IVUS image.Type: GrantFiled: June 1, 2006Date of Patent: March 1, 2011Assignee: The Cleveland Clinic CorporationInventors: Anuja Nair, D. Geoffrey Vince, Jon D. Klingensmith, Barry D. Kuban
-
Patent number: 7874990Abstract: A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter (including components attached thereto—e.g., IVUS console, transducer, etc.). Specifically, in accordance with a first embodiment of the present invention, a computing device is electrically connected to a catheter and used to acquire RF backscattered data from a vascular structure (e.g., a blood vessel, etc.). The backscattered ultrasound data is then used, together with an algorithm, to estimate the transfer function. The transfer function can then be used (at least in a preferred embodiment) to calculate response data for the vascular tissue (i.e., the tissue component of the backscattered ultrasound data). In a second embodiment of the present invention, an IVUS console is electrically connected to a catheter and a computing device and is used to acquire RF backscattered data from a vascular structure.Type: GrantFiled: January 14, 2004Date of Patent: January 25, 2011Assignee: The Cleveland Clinic FoundationInventors: Anuja Nair, D. Geoffrey Vince, Jon D. Klingensmith, Barry D. Kuban
-
Patent number: 7627156Abstract: A system and method are disclosed for automatically classifying plaque lesions. A plaque classification application applies a plaque classification criterion to at least one graphical image, comprising a map of spectrally-analyzed characterized tissue of a vessel cross-section, to render an overall plaque classification for the slice or set of slices, covering a 3D volume. The plaque classification is based upon the amount and location of each characterized tissue type (e.g., necrotic core—NC). In an exemplary embodiment the set of potential plaque classifications, not to be confused with characterized tissue types—from which the plaque classifications are derived—include, for example: adaptive intimal thickening (AIT), pathological intimal thickening (PIT), fibroatheroma (FA), thin-cap fibroatheroma (TCFA), and fibro-calcific (FC).Type: GrantFiled: March 22, 2007Date of Patent: December 1, 2009Assignee: Volcano CorporationInventors: Marja Pauliina Margolis, D. Geoffrey Vince, Anuja Nair, Vincent J. Burgess
-
Patent number: 7463759Abstract: A system and method use the frequency spectrum of a radio frequency (RF) signal backscattered from vascular tissue to identify at least one border on a vascular image. A data gathering device is connected to a computing device and a transducer via a catheter. RF data generated via the transducer is provided to the computing device via the data-gathering device. The computing device includes: at least one data storage device for storing a plurality of tissue types and parameters related thereto, and at least one application (e.g., a characterization application, a gradient-border application, a frequency-border application and/or an active-contour application). The characterization application converts the RF data into the frequency domain and identifies a plurality of associate parameters. The identified parameters are compared to the parameters stored in the data storage device to identify the corresponding tissue type and thereafter determine at least one border on a vascular image.Type: GrantFiled: June 8, 2006Date of Patent: December 9, 2008Assignee: The Cleveland Clinic FoundationInventors: Jon D. Klingensmith, Anuja Nair, Barry D. Kuban, D. Geoffrey Vince
-
Publication number: 20080287795Abstract: A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an-IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e.Type: ApplicationFiled: April 14, 2008Publication date: November 20, 2008Applicant: Volcano CorporationInventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
-
Patent number: 7359554Abstract: A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e.Type: GrantFiled: August 26, 2003Date of Patent: April 15, 2008Assignee: Cleveland Clinic FoundationInventors: Jon D. Klingensmith, D. Geoffrey Vince, Anuja Nair, Barry D. Kuban
-
Patent number: 7215802Abstract: A system and method is provided for using the frequency spectrum of a radio frequency (RF) signal backscattered from vascular tissue to identify at least one border (e.g., tissue interface, etc.) on a vascular image. Embodiments of the present invention operate in accordance with a data gathering device (e.g., an intra-vascular ultrasound (IVUS) device, etc.) electrically connected to a computing device and a transducer via a catheter. The transducer is used to gather radio frequency (RF) data backscattered from vascular tissue. The RF data is then provided to (or acquired by) the computing device via the data-gathering device. In one embodiment of the present invention, the computing device includes (i) at least one data storage device (e.g., database, memory, etc.) for storing a plurality of tissue types and parameters related thereto and (ii) at least one application (e.g., a characterization application, a gradient-border application, a frequency-border application and/or an active-contour application).Type: GrantFiled: April 29, 2004Date of Patent: May 8, 2007Assignee: The Cleveland Clinic FoundationInventors: Jon D. Klingensmith, Anuja Nair, Barry D. Kuban, D. Geoffrey Vince