Patents by Inventor D. Wayne Blaylock

D. Wayne Blaylock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220395815
    Abstract: A method for preparing a heterogeneous catalyst. The method comprises steps of: (a) combining (i) a support, (ii) an aqueous solution of a noble metal compound and (iii) a C2-C18 thiol comprising at least one hydroxyl or carboxylic acid substituent; to form a wet particle and (b) removing water from the wet particle by drying followed by calcination to produce the catalyst.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 15, 2022
    Inventors: Victor J. Sussman, Wen-Sheng Lee, Jeffrey A. Herron, D. Wayne Blaylock, Daniel J. Arriola, Andrew T. Heitsch, Alexey Kirilin, Heidi Clements, Abrin L. Schmucker, Daniel A. Hickman
  • Patent number: 10865179
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein oxygen concentration at a reactor outlet is from 1 to 7.5 mol % and wherein pH at a reactor outlet is no greater than 7.5.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: December 15, 2020
    Assignees: Dow Global Technologies, LLC, Rohm and Haas Company
    Inventors: Jeffrey Herron, Daniel J. Arriola, D. Wayne Blaylock, Wen-Sheng Lee, Victor Sussman, Daniel A. Hickman, Kirk W. Limbach
  • Patent number: 10829432
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 70% of catalyst volume, and wherein oxygen concentration at a reactor outlet is from 0.5 to 7.5 mol %.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: November 10, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kirk W. Limbach, Dmitry A. Krapchetov, Christopher D. Frick, Daniel A. Hickman, Jeffrey Herron, Kurt D. Olson, D. Wayne Blaylock, Victor Sussman, Wen-Sheng Lee
  • Patent number: 10745341
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting in a tubular reactor having at least four zones a mixture comprising methacrolein, methanol, oxygen and a base with a catalyst bed of heterogeneous catalyst comprising a support and a noble metal, wherein reaction zones comprising catalyst beds alternate with mixing zones not comprising catalyst beds.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 18, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Dmitry A. Krapchetov, Kirk W. Limbach, Daniel A. Hickman, Jeffrey Herron, Kurt W. Olson, D. Wayne Blaylock
  • Publication number: 20200216381
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein oxygen concentration at a reactor outlet is from 1 to 7.5 mol % and wherein pH at a reactor outlet is no greater than 7.5.
    Type: Application
    Filed: September 12, 2018
    Publication date: July 9, 2020
    Inventors: Jeffrey Herron, Daniel J. Arriola, D. Wayne Blaylock, Wen Sheng Lee, Victor Sussman, Daniel A. Hickman, Kirk W. Limbach
  • Publication number: 20200199059
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting in a tubular reactor having at least four zones a mixture comprising methacrolein, methanol, oxygen and a base with a catalyst bed of heterogeneous catalyst comprising a support and a noble metal, wherein reaction zones comprising catalyst beds alternate with mixing zones not comprising catalyst beds.
    Type: Application
    Filed: June 25, 2018
    Publication date: June 25, 2020
    Inventors: Dmitry A. Krapchetov, Kirk W. Limbach, Daniel A. Hickman, Jeffrey Herron, Kurt W. Olson, D. Wayne Blaylock
  • Publication number: 20200171465
    Abstract: A method for preparing a heterogeneous catalyst. The method comprises steps of: (a) combining (i) a support, (ii) an aqueous solution of a noble metal compound and (iii) a C2-C18 thiol comprising at least one hydroxyl or carboxylic acid substituent; to form a wet particle and (b) removing water from the wet particle by drying followed by calcination to produce the catalyst.
    Type: Application
    Filed: June 25, 2018
    Publication date: June 4, 2020
    Inventors: Victor Sussman, Wen Sheng Lee, Jeffrey Herron, D. Wayne Blaylock, Daniel J. Arriola, Andrew T. Heitsch, Alexey Kirilin, Heidi Clements, Abrin L. Schmucker, Daniel A. Hickman
  • Publication number: 20200172464
    Abstract: A method for preparing methyl methacrylate from methacrolein and methanol. The method comprises contacting a mixture comprising methacrolein, methanol and oxygen with a heterogeneous catalyst comprising a support and a noble metal, wherein said catalyst has an average diameter of at least 200 microns and at least 90 wt % of the noble metal is in the outer 70% of catalyst volume, and wherein oxygen concentration at a reactor outlet is from 0.5 to 7.5 mol %.
    Type: Application
    Filed: June 25, 2018
    Publication date: June 4, 2020
    Inventors: Kirk W. Limbach, Dmitry A. Krapchetov, Christopher D. Frick, Daniel A. Hickman, Jeffrey Herron, Kurt D. Olson, D. Wayne Blaylock, Victor Sussman, Wen Sheng Lee
  • Patent number: 9145428
    Abstract: Methods for forming boronic acids, and intermediates thereof, are disclosed. The method may include mixing a 1-chloro-2-substituted-3-fluorobenzene starting material with an alkyllithium in a first reactor to form a reaction mixture. The 1-chloro-2-substituted-3-fluorobenzene starting material may react with the alkyllithium to form a lithiated intermediate. The reaction mixture may be continuously transferred to a second reactor and a borate may be continuously introduced to form a boronate. The boronic acids may be formed by treating the boronate with aqueous potassium hydroxide followed by acidification. Such methods may provide continuous formation of the boronic acids and may reduce an amount of a reactive intermediate present during processing as well as cycle times. Systems for forming the boronic acids are also disclosed.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 29, 2015
    Assignee: Dow AgroSciences LLC
    Inventors: Mark V. M. Emonds, Catherine A. Menning, D. Wayne Blaylock
  • Publication number: 20130066115
    Abstract: Methods for forming boronic acids, and intermediates thereof, are disclosed. The method may include mixing a 1-chloro-2-substituted-3-fluorobenzene starting material with an alkyllithium in a first reactor to form a reaction mixture. The 1-chloro-2-substituted-3-fluorobenzene starting material may react with the alkyllithium to form a lithiated intermediate. The reaction mixture may be continuously transferred to a second reactor and a borate may be continuously introduced to form a boronate. The boronic acids may be formed by treating the boronate with aqueous potassium hydroxide followed by acidification. Such methods may provide continuous formation of the boronic acids and may reduce an amount of a reactive intermediate present during processing as well as cycle times. Systems for forming the boronic acids are also disclosed.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 14, 2013
    Applicant: DOW AGROSCIENCES LLC
    Inventors: Mark V. M. Emonds, Catherine A. Menning, D. Wayne Blaylock