Patents by Inventor Da Sung

Da Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120465
    Abstract: An anode active material for a secondary battery includes a carbon-based active material, and silicon-based active material particles doped with magnesium. At least some of the silicon-based active material particles include pores, and a volume ratio of pores having a diameter of 50 nm or less among the pores is 2% or less based on a total volume of the silicon-based active material particles.
    Type: Application
    Filed: September 7, 2023
    Publication date: April 11, 2024
    Inventors: Hwan Ho JANG, Moon Sung KIM, Hyo Mi KIM, Sang Baek RYU, Da Hye PARK, Eun Jun PARK, Seung Hyun YOOK, Da Bin CHUNG, Jun Hee HAN
  • Publication number: 20240097104
    Abstract: The technology and implementations disclosed in this patent document generally relate to a lithium secondary battery including: a first unit cell including a first anode including a 1-1 anode mixture layer and a 1-2 anode mixture layer on the 1-1 anode mixture layer, and a second unit cell including a second anode including a 2-1 anode mixture layer and a 2-2 anode mixture layer on the 2-1 anode mixture layer, wherein a weight ratio of the silicon-based active material in the 1-2 anode mixture layer is greater than a weight ratio of the silicon-based active material in the 1-1 anode mixture layer, and a weight ratio of the silicon-based active material in the 2-2 anode mixture layer is less than or equal to a weight ratio of the silicon-based active material in the 2-1 anode mixture layer.
    Type: Application
    Filed: August 2, 2023
    Publication date: March 21, 2024
    Inventors: Jun Hee HAN, Moon Sung KIM, Hyo Mi KIM, Sang Baek RYU, Da Hye PARK, Sang In BANG, Seung Hyun YOOK, Hwan Ho JANG, Da Bin CHUNG
  • Patent number: 11929491
    Abstract: An anode for a lithium secondary battery includes an anode current collector, and an anode active material layer formed on at least one surface of the anode current collector. The anode active material layer includes a carbon-based active material, a first silicon-based active material doped with magnesium and a second silicon-based active material not doped with magnesium. A content of the first silicon-based active material is in a range from 2 wt % to 20 wt % based on a total weight of the anode active material layer.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: March 12, 2024
    Assignee: SK ON CO., LTD.
    Inventors: Hwan Ho Jang, Moon Sung Kim, Hyo Mi Kim, Sang Baek Ryu, Da Hye Park, Seung Hyun Yook, Da Bin Chung, Jun Hee Han
  • Patent number: 11929495
    Abstract: In some implementations, the anode includes a current collector, a first anode mixture layer formed on at least one surface of the current collector, and a second anode mixture layer formed on the first anode mixture layer. The first anode mixture layer and the second anode mixture layer include a carbon-based active material, respectively. The first anode mixture layer includes a first binder, a first silicon-based active material, and a first conductive material. The second anode mixture layer includes a second binder, a second silicon-based active material, and a second conductive material. Contents of the first conductive material and the second conductive material are different from each other with respect to the total combined weight of the first anode mixture layer and the second anode mixture layer. Types of the first silicon-based active material and the second silicon-based active material are different from each other.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: March 12, 2024
    Assignee: SK ON CO., LTD.
    Inventors: Hyo Mi Kim, Moon Sung Kim, Sang Baek Ryu, Da Hye Park, Seung Hyun Yook, Hwan Ho Jang, Kwang Ho Jeong, Da Bin Chung, Jun Hee Han
  • Publication number: 20230395386
    Abstract: An etching processing apparatus and an etching processing method using a liquid fluorocarbon or a liquid hydrofluorocarbon precursor are proposed, the etching processing apparatus and etching processing method capable of achieving almost the same effect as cryogenic etching even at a relatively high temperature compared to cryogenic etching. In addition, an etching processing apparatus and an etching processing method capable of solving process problems that may arise due to a liquid precursor and a low temperature may be provided.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 7, 2023
    Applicants: DAEJEON UNIVERSITY INDUSTRY-UNIVERSITY COOPERATION FOUNDATION, RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Kyong Nam KIM, Geun Young YEOM, Dong Woo KIM, Da In SUNG, Hyun Woo TAK, Ji Young OH
  • Patent number: 11120975
    Abstract: An ion-beam etching apparatus includes: a plasma chamber configured to generate plasma from process gas in the plasma chamber; at least one plasma valve coupled to the plasma chamber; an ion-beam source in communication with the plasma chamber, wherein the ion-beam source is configured to extract ions from the plasma and generate ion-beams when a bias is applied to the ion-beam source; an etching chamber in communication with the ion-beam source, and configured to accommodate an object to be etched; at least one etching valve coupled to the etching chamber; and at least one exhausting pump connected to either one or both of the plasma chamber and the etching chamber by the plasma valve and the etching valve, respectively, wherein the at least one exhausting pump is configured to receive and exhaust radicals in either one or both of the plasma chamber and the etching chamber by the plasma valve and the etching valve, respectively.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 14, 2021
    Assignee: Research and Business Foundation Sungkyunkwan University
    Inventors: Geun Young Yeom, Jin Woo Park, Doo San Kim, Jong Sik Oh, Da In Sung, You Jin Ji, Won Oh Lee, Mu Kyeom Mun, Kyung Chae Yang, Ki Seok Kim, Ji Soo Oh, Ki Hyun Kim
  • Patent number: 10784082
    Abstract: Disclosed is an inductively-coupled plasma-generating device including: a first power supply for supplying high frequency power; a second power supply for supplying low frequency power; a single coil-based plasma source including at least two antennas which comprise a first antenna having one end as a grounded end and the other end, wherein the first power supply is connected to the first antenna at a point thereof adjacent to the grounded end to receive the high frequency power; and a second antenna surrounded by the first antenna, wherein the second antenna has one end connected to the first antenna and the other end as a low frequency power receiving end connected to the second power supply; and a gas supply for supplying a gas, wherein the gas is excited into plasma by the single coil-based plasma source.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: September 22, 2020
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Geun Young Yeom, Kyung Chae Yang, Hyun Woo Tak, Ye Ji Shin, Da In Sung
  • Publication number: 20190252153
    Abstract: Disclosed is an inductively-coupled plasma-generating device including: a first power supply for supplying high frequency power; a second power supply for supplying low frequency power; a single coil-based plasma source including at least two antennas which comprise a first antenna having one end as a grounded end and the other end, wherein the first power supply is connected to the first antenna at a point thereof adjacent to the grounded end to receive the high frequency power; and a second antenna surrounded by the first antenna, wherein the second antenna has one end connected to the first antenna and the other end as a low frequency power receiving end connected to the second power supply; and a gas supply for supplying a gas, wherein the gas is excited into plasma by the single coil-based plasma source.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 15, 2019
    Applicant: Research & Business Foundation Sungkyunkwan University
    Inventors: Geun Young YEOM, Kyung Chae YANG, Hyun Woo Tak, Ye Ji SHIN, Da In SUNG
  • Publication number: 20190035610
    Abstract: An ion-beam etching apparatus includes: a plasma chamber configured to generate plasma from process gas in the plasma chamber; at least one plasma valve coupled to the plasma chamber; an ion-beam source in communication with the plasma chamber, wherein the ion-beam source is configured to extract ions from the plasma and generate ion-beams when a bias is applied to the ion-beam source; an etching chamber in communication with the ion-beam source, and configured to accommodate an object to be etched; at least one etching valve coupled to the etching chamber; and at least one exhausting pump connected to either one or both of the plasma chamber and the etching chamber by the plasma valve and the etching valve, respectively, wherein the at least one exhausting pump is configured to receive and exhaust radicals in either one or both of the plasma chamber and the etching chamber by the plasma valve and the etching valve, respectively.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 31, 2019
    Applicant: Research & Business Foundation Sungkyunkwan University
    Inventors: Geun Young YEOM, Jin Woo PARK, Doo San KIM, Jong Sik OH, Da In SUNG, You Jin JI, Won Oh LEE, Mu Kyeom MUN, Kyung Chae YANG, Ki Seok KIM, Ji Soo OH, Ki Hyun KIM
  • Patent number: 9496418
    Abstract: A non-volatile memory including the following elements is provided. A first conductive layer and a second conductive layer are disposed on a substrate and separated from each other. A patterned hard mask layer is disposed on the first conductive layer and exposes a sharp tip of the first conductive layer. A third conductive layer is disposed on the substrate at one side of the first conductive layer away from the second conductive layer. The third conductive layer is located on a portion of the first conductive layer and covers the sharp tip, and the third conductive layer and the first conductive layer are isolated from each other. A first doped region is disposed in the substrate below the third conductive layer. A second doped region is disposed in the substrate at one side of the second conductive layer away from the first conductive layer.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: November 15, 2016
    Assignee: Powerchip Technology Corporation
    Inventors: Da Sung, Cheng-Yuan Hsu, Jian-Ming Jaw, Hui-Huang Chen
  • Publication number: 20160240686
    Abstract: A non-volatile memory including the following elements is provided. A first conductive layer and a second conductive layer are disposed on a substrate and separated from each other. A patterned hard mask layer is disposed on the first conductive layer and exposes a sharp tip of the first conductive layer. A third conductive layer is disposed on the substrate at one side of the first conductive layer away from the second conductive layer. The third conductive layer is located on a portion of the first conductive layer and covers the sharp tip, and the third conductive layer and the first conductive layer are isolated from each other. A first doped region is disposed in the substrate below the third conductive layer. A second doped region is disposed in the substrate at one side of the second conductive layer away from the first conductive layer.
    Type: Application
    Filed: May 5, 2015
    Publication date: August 18, 2016
    Inventors: Da Sung, Cheng-Yuan Hsu, Jian-Ming Jaw, Hui-Huang Chen
  • Patent number: 7514311
    Abstract: A method of manufacturing a silicon-oxide-nitride-oxide-silicon (SONOS) memory is provided herein. In the method, a bottom silicon oxide layer is formed over a substrate. A patterned mask layer having a trench therein is formed over the bottom silicon oxide layer. A charge-trapping layer is formed over the substrate covering the surface of the trench. The charge-trapping layer is etched back to form a pair of charge storage spacers on the sidewalls of the trench. After removing the mask layer, a top silicon oxide layer is formed over the substrate covering the charge storage spacers and the bottom silicon oxide layer. A gate corresponding to the pair of charge storage spacers is formed on the top silicon oxide layer. A source/drain region is formed in the substrate on each side of the gate.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: April 7, 2009
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Sheng Wu, Da Sung
  • Publication number: 20090086540
    Abstract: A method of operating a non-volatile memory array is provided. The non-volatile memory array includes a substrate, a number of rows of memory cells, a number of control gate lines, a number of select gate lines, a number of source lines, and a number of drain lines. The operating method includes applying 5V voltage to a selected source line, 1.5V voltage to a selected select gate line, 8V voltage to non-selected select gate lines, 10-12V voltage to a selected control gate line and 0-?2V voltage to non-selected control gate lines and the substrate. The drain lines are grounded so that source-side injection (SSI) is triggered to inject electrons into a floating gate of the selected memory cell in a programming operation.
    Type: Application
    Filed: December 9, 2008
    Publication date: April 2, 2009
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventors: Chih-Wei Hung, Cheng-Yuan Hsu, Da Sung
  • Patent number: 7485529
    Abstract: A method of fabricating a non-volatile memory is described. A substrate having stacked gate structures thereon is provided. Each stacked gate structure includes a select gate dielectric layer, a select gate and a cap layer. A source region and a drain region are formed in the substrate. The source region and the drain region are separated from each other by at least two stacked gate structures. A tunneling dielectric layer is formed over the substrate and then a first conductive layer is formed over the tunneling dielectric layer. The first conductive layer is patterned to form floating gates in the gaps between the stacked gate structures. After forming an inter-gate dielectric layer over the substrate, a second conductive layer is formed over the substrate. The second conductive layer is patterned to form mutually linked control gates in the gaps between neighboring stacked gate structures.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: February 3, 2009
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Chih-Wei Hung, Cheng-Yuan Hsu, Da Sung
  • Patent number: 7436707
    Abstract: A flash memory cell structure has a substrate, a select gate, a first-type doped region, a shallow second-type doped region, a deep second-type doped region, and a doped source region. The substrate has a stacked gate. The select gate is formed on the substrate and adjacent to the stacked gate. The first-type ion formed region is doped in the substrate and adjacent to the select gate as a drain. The shallow second-type doped region is formed on one side of the first-type doped region below the stacked gate. The deep second-type doped region, which serves as a well, is formed underneath the first-type doped region with one side bordering on the shallow second-type doped region. The doped source region is formed on a side of the shallow second-type doped region as a source.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 14, 2008
    Assignee: Powership Semiconductor Corp.
    Inventors: Chih-Wei Hung, Da Sung, Cheng-Yuan Hsu
  • Publication number: 20080048244
    Abstract: A nonvolatile memory includes a substrate, stacked gate structures, spacers, control gates, a composite dielectric layer and source region/drain regions. Each of stack gate structures is formed on the substrate and is consisted of a select gate dielectric layer, a select gate and a cap layer. The spacers are disposed on the sidewalls of the stack gate structure. The composite dielectric layer including a bottom dielectric layer, a charge trapping layer and upper dielectric layer is formed on the substrate. The control gates, which filled in the spaces between the stacked gate structures, are disposed on the composite dielectric layer and connected to each other. The source region/drain region is configured in the substrate near the outer two stacked gate structures.
    Type: Application
    Filed: October 31, 2007
    Publication date: February 28, 2008
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventors: Chih-Wei Hung, Cheng-Yuan Hsu, Da Sung
  • Publication number: 20070148880
    Abstract: A method of manufacturing a silicon-oxide-nitride-oxide-silicon (SONOS) memory is provided herein. In the method, a bottom silicon oxide layer is formed over a substrate. A patterned mask layer having a trench therein is formed over the bottom silicon oxide layer. A charge-trapping layer is formed over the substrate covering the surface of the trench. The charge-trapping layer is etched back to form a pair of charge storage spacers on the sidewalls of the trench. After removing the mask layer, a top silicon oxide layer is formed over the substrate covering the charge storage spacers and the bottom silicon oxide layer. A gate corresponding to the pair of charge storage spacers is formed on the top silicon oxide layer. A source/drain region is formed in the substrate on each side of the gate.
    Type: Application
    Filed: March 2, 2007
    Publication date: June 28, 2007
    Applicant: Powerchip Semiconductor Corp.
    Inventors: Sheng Wu, Da Sung
  • Publication number: 20070109851
    Abstract: A method of fabricating a non-volatile memory is described. A substrate having stacked gate structures thereon is provided. Each stacked gate structure includes a select gate dielectric layer, a select gate and a cap layer. A source region and a drain region are formed in the substrate. The source region and the drain region are separated from each other by at least two stacked gate structures. A tunneling dielectric layer is formed over the substrate and then a first conductive layer is formed over the tunneling dielectric layer. The first conductive layer is patterned to form floating gates in the gaps between the stacked gate structures. After forming an inter-gate dielectric layer over the substrate, a second conductive layer is formed over the substrate. The second conductive layer is patterned to form mutually linked control gates in the gaps between neighboring stacked gate structures.
    Type: Application
    Filed: January 8, 2007
    Publication date: May 17, 2007
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventors: Chih-Wei Hung, Cheng-Yuan Hsu, Da Sung
  • Patent number: 7205189
    Abstract: A method of manufacturing a non-volatile memory cell is described. The method includes forming a first dielectric layer on a substrate and then forming a patterned mask layer with a trench on the first dielectric layer. A pair of charge storage spacers is formed on the sidewalls of the trench. The patterned mask layer is removed and then a second dielectric is formed on the substrate covering the pair of charge storage spacers. A conductive layer is formed on the second dielectric layer and subsequently patterned to form a gate structure on the pair of charge storage spacers. Portions of the second and first dielectric layers outside the gate structure are removed and then a source/drain region is formed in the substrate on each side of the conductive gate structure.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: April 17, 2007
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Sheng Wu, Da Sung
  • Patent number: 7183606
    Abstract: A flash memory cell including a p-type substrate, an n-type deep well, a stacked gate structure, a source region, a drain region, a p-type pocket doped region, spacers, a p-type doped region and a contact plug is provided. The n-type deep well is set up within the p-type substrate and the stacked gate structure is set up over the p-type substrate. The stacked gate structure further includes a tunneling oxide layer, a floating gate, an inter-gate dielectric layer, a control gate and a cap layer sequentially formed over the p-type substrate. The source region and the drain region are set up in the p-type substrate on each side of the stacked gate structure. The p-type pocket doped region is set up within the n-type deep well region and extends from the drain region to an area underneath the stacked gate structure adjacent to the source region. The spacers are attached to the sidewalls of the stacked gate structure. The p-type doped region is set up within the drain region.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: February 27, 2007
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Leo Wang, Chien-Chih Du, Da Sung, Chen-Chiu Hsue