Patents by Inventor Dag Ovrebo

Dag Ovrebo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9631533
    Abstract: A method for removal of SOx and NOx from an exhaust gas that contains SOx, NOx, soot and water vapor, the exhaust gas originating from a combustion of a fuel where the combustion takes place in an internal combustion engine. The exhaust gas is passed through at least one catalytic reactor having an oxidation catalyst, in which catalytic reactor at least SO2 is converted to SO3 and NO is converted to NO2. Thereafter the exhaust gas is passed through a condenser and cooled to a temperature which is below the dew point temperature of the water in the condenser such that SO3, NO2 and water is condensed and SO3 and NO2 is dissolved into the condensed water and removed from the exhaust gas.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: April 25, 2017
    Assignee: Alfa Laval Aalborg A/S
    Inventors: Mohan Menon, Dag Ovrebo
  • Publication number: 20150322833
    Abstract: A method for removal of SOx and NOx from an exhaust gas that contains SOx, NOx, soot and water vapour, the exhaust gas originating from a combustion of a fuel where the combustion takes place in an internal combustion engine. The exhaust gas is passed through at least one catalytic reactor having an oxidation catalyst, in which catalytic reactor at least SO2 is converted to SO3 and NO is converted to NO2. Thereafter the exhaust gas is passed through a condenser and cooled to a temperature which is below the dew point temperature of the water in the condenser such that SO3, NO2 and water is condensed and SO3 and NO2 is dissolved into the condensed water and removed from the exhaust gas.
    Type: Application
    Filed: January 24, 2014
    Publication date: November 12, 2015
    Inventors: Mohan Menon, Dag Ovrebo
  • Publication number: 20150101315
    Abstract: Exhaust gas apparatus for the cleaning of exhaust gas where the exhaust gas apparatus comprises an exhaust conduit section which is formed with at least two separate flow paths. Each flow path is provided with a particle filter for the removal of particulate matter from the exhaust gas, an NOx trap for the removal of NOx from the exhaust gas. The exhaust gas apparatus further comprises at least one cold flame vaporizer in which fuel is partially oxidized in preheated air to form a cold flame gas where the cold flame vaporizer is arranged in fluid communication with each of the flow paths in the exhaust conduit section such that the cold flame gas can flow through the particle filter and the NOx trap, and valve means for controlling the flow of cold flame gas from the cold flame vaporizer to each flow path in the exhaust conduit section. Thereby, both the particle filter and the NOx trap in at least one of the flow paths can be regenerated in a single operation.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Dag Ovrebo, Klaus Lucka, Heidi Pohland von Schloss
  • Patent number: 8992870
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 31, 2015
    Assignee: Yara International ASA
    Inventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
  • Patent number: 8601984
    Abstract: Engine system comprising a compression ignition engine (20) including at least one combustion chamber and a cold flame vaporizer (40) in which a fuel is partially oxidized in preheated air to form a cold flame gas. The cold flame vaporizer (40) is in fluid communication with the combustion chamber of the compression ignition engine (20). There is further provided means (50) for supplying air such that the cold flame gas can be mixed with the additional air before being injected into the combustion chamber, and means (22) for injecting a pilot fuel into the combustion chamber, thereby producing a pilot flame in the combustion chamber which ignites the mixture of cold flame gas and air. There is also provided a method for a substantially NOx-free combustion of diesel fuel in a compression ignition engine (20).
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: December 10, 2013
    Assignee: Cool Flame Technologies AS
    Inventors: Klaus Lucka, Dag Øvrebø, Heide Pohland Vom Schloss
  • Publication number: 20120051990
    Abstract: There is described an exhaust gas cleaning apparatus for the cleaning of exhaust gas which originates from a combustion process in a combustion chamber. The exhaust gas cleaning apparatus comprises an exhaust gas flow path which is arranged in fluid communication with the combustion chamber and through which the exhaust gas is flowing, and a cold flame gas supply which provides a cold flame gas. The cold flame gas supply is arranged in fluid communication with the exhaust gas flow path such that the cold flame gas can be injected into the exhaust gas flowing in the exhaust gas flow path and thereby, at least partly, remove impurities such as particulate matter, NOx and hydrocarbons, which are present in the exhaust gas. There is also described a method for cleaning of exhaust gas.
    Type: Application
    Filed: February 26, 2010
    Publication date: March 1, 2012
    Applicant: COOL FLAME TECHNOLOGIES AS
    Inventors: Dag Øvrebø, Kåre Kristiansen
  • Publication number: 20110110835
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Application
    Filed: October 26, 2009
    Publication date: May 12, 2011
    Inventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
  • Publication number: 20100242898
    Abstract: Engine system comprising a compression ignition engine (20) including at least one combustion chamber and a cold flame vaporizer (40) in which a fuel is partially oxidized in preheated air to form a cold flame gas. The cold flame vaporizer (40) is in fluid communication with the combustion chamber of the compression ignition engine (20). There is further provided means (50) for supplying air such that the cold flame gas can be mixed with the additional air before being injected into the combustion chamber, and means (22) for injecting a pilot fuel into the combustion chamber, thereby producing a pilot flame in the combustion chamber which ignites the mixture of cold flame gas and air. There is also provided a method for a substantially NOx-free combustion of diesel fuel in a compression ignition engine (20).
    Type: Application
    Filed: September 1, 2008
    Publication date: September 30, 2010
    Applicant: ENERGY CONVERSION TECHNOLOGY AS
    Inventors: Dag Ovrebo, Klaus Lucka, Heidi Pohland vom Schloss
  • Publication number: 20100236223
    Abstract: Exhaust gas apparatus for the cleaning of exhaust gas where the exhaust gas apparatus comprises an exhaust conduit section which is formed with at least two separate flow paths. Each flow path is provided with a particle filter for the removal of particulate matter from the exhaust gas, an NOx trap for the removal of NOx from the exhaust gas. The exhaust gas apparatus further comprises at least one cold flame vaporizer in which fuel is partially oxidized in preheated air to form a cold flame gas where the cold flame vaporizer is arranged in fluid communication with each of the flow paths in the exhaust conduit section such that the cold flame gas can flow through the particle filter and the NOx trap, and valve means for controlling the flow of cold flame gas from the cold flame vaporizer to each flow path in the exhaust conduit section. Thereby, both the particle filter and the NOx trap in at least one of the flow paths can be regenerated in a single operation.
    Type: Application
    Filed: September 1, 2008
    Publication date: September 23, 2010
    Applicant: ENERGY CONVERSION TECHNOLOGY AS
    Inventors: Dag Ovrebo, Klaus Lucka, Heidi Pohland vom Schloss
  • Publication number: 20100098611
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % CO3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % CO3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 22, 2010
    Inventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
  • Patent number: 7700519
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % CO3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Grant
    Filed: July 4, 2001
    Date of Patent: April 20, 2010
    Assignee: Yara International ASA
    Inventors: Øystein Nirisen, Klaus Schöffel, David Waller, Dag Øvrebø
  • Publication number: 20040023796
    Abstract: The present invention relates to a catalyst comprising 0.1-10 mol % Co3-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support for decomposition of N2O in gases containing NO. The catalyst may also contain 0.01-2 weight % ZrO2. The invention further comprises a method for performing a process comprising formation of N2O. The N2O containing gas is brought in contact with a catalyst comprising 0.1-10 mol % C03-xMxO4, where M is Fe or Al and x=0-2, on a cerium oxide support, at 250-1000° C. The method may comprise that ammonia is oxidized in presence of an oxidation catalyst and that the thereby formed gas mixture is brought in contact with the catalyst comprising the cobalt component on cerium oxide support at a temperature of 500-1000° C.
    Type: Application
    Filed: June 25, 2003
    Publication date: February 5, 2004
    Inventors: Oystein Nirisen, Klaus Schoffel, David Waller, Dag Ovrebo