Patents by Inventor Daigo NAGAYAMA

Daigo NAGAYAMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936044
    Abstract: A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 ?m to 1 ?m of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 ?m to 1 ?m in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: March 19, 2024
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke Yamada, Nobuyuki Ishiwatari, Satoshi Akasaka, Daigo Nagayama, Shingo Morokuma, Koichi Nishio, Iwao Soga, Hideaki Tanaka, Takashi Kameda, Tooru Fuse, Hiromitsu Ikeda
  • Publication number: 20230352686
    Abstract: A method for producing a carbon material may include: granulating a raw carbon material by applying mechanical energy comprising impact, compression, friction, and/or shear force. The granulating may be carried out in the presence of a granulating agent. The granulating agent may be liquid during the granulating of the raw carbon material. Alternatively or in addition, the granulating agent may include no organic solvent, an organic solvent having no flash point, or no organic solvent having a flash point of 5° C. or higher.
    Type: Application
    Filed: June 9, 2023
    Publication date: November 2, 2023
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220407070
    Abstract: An object of the present invention is to provide a carbon material for negative electrodes of non-aqueous secondary batteries having a high capacity, a high output, excellent cycle characteristics and a low irreversible capacity. The present invention relates to a carbon material for negative electrodes of non-aqueous secondary batteries, the carbon material comprising: (1) a composite carbon particles (A) containing elemental silicon, and (2) amorphous composite graphite particles (B) in which graphite particles (C) and amorphous carbon are composited.
    Type: Application
    Filed: August 19, 2022
    Publication date: December 22, 2022
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Daigo NAGAYAMA, Tooru Fuse
  • Patent number: 11450853
    Abstract: An object of the present invention is to provide a carbon material for negative electrodes of non-aqueous secondary batteries having a high capacity, a high output, excellent cycle characteristics and a low irreversible capacity. The present invention relates to a carbon material for negative electrodes of non-aqueous secondary batteries, the carbon material comprising: (1) a composite carbon particles (A) containing elemental silicon, and (2) amorphous composite graphite particles (B) in which graphite particles (C) and amorphous carbon are composited.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 20, 2022
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Daigo Nagayama, Tooru Fuse, Hisako Kondo
  • Publication number: 20220123309
    Abstract: A carbon material may include granulated particles satisfying (1L) and (2L): (1L) the granulated particles are made of a carbonaceous material; and (2L) the granulated particles satisfy the relationship |X1?X|/X1?0.2, wherein X is a volume-based average particle diameter determined by laser diffraction, and X1 is an equivalent circular diameter as determined from a cross-sectional SEM image, provided that the cross-sectional SEM image is a reflected electron image acquired at an acceleration voltage of 10 kV, wherein the carbon material has an average box-counting dimension relative to void regions of 30 particles of 1.55 or greater, as calculated from images obtained by randomly selecting 30 granulated particles from a cross-sectional SEM image of the carbon material, dividing the cross-sectional SEM image of each granulated particle into void regions and non-void regions, and binarizing the image. Such carbon material may be used in electrodes and batteries.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220123308
    Abstract: A carbon material may satisfying inequality (1K): 10.914 > 5 ? x k - y k - 0.0087 ? a , ( 1 ? K ) wherein a is a volume-based average particle diameter in um of the carbon material, xk is a true density in g/cm3 of the carbon material, and yk is a value determined by equation (2K): y k = D 100 - D T , ( 2 ? K ) wherein D100 is density in g/cm3 of carbon material under uniaxial load of 100 kgf/3.14 cm2, and DT is tap density of carbon material in g/cm3. Such carbon materials may be used in electrodes and batteries.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220123311
    Abstract: A carbon material may include granulated particles made of a carbonaceous material and satisfying (2L), ? X 1 - X ? / X 1 ? 0.2 , ( 2 ? L ) wherein X is a volume-based average particle diameter determined by laser diffraction, and X1 is an equivalent circular diameter determined from a cross-sectional SEM image, which is a reflected electron image acquired at 10 kV, wherein the carbon material has an average inter-void distance Z of 30 granulated particles randomly selected from a cross-sectional SEM image of the carbon material, as Zave, and wherein the carbon material has volume-based average particle diameter X determined by laser diffraction in a Zave/X ratio of 0.060 or less.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220123310
    Abstract: A carbon material may include granulated particles made of a carbonaceous material and satisfying (2L): ? X 1 - X ? / X 1 ? 0.2 , ( 2 ? L ) wherein X is a volume-based average particle diameter determined by laser diffraction, and X1 is an equivalent circular diameter determined from a cross-sectional SEM image, which is a reflected electron image acquired at an acceleration voltage of 10 kV, wherein X and X1 are determined from a cross-sectional SEM image, by drawing grid lines to split the minor axis and the major axis of a target granulated particle each into 20 parts to obtain a grid, and using cells in the grid, compartmentalizing the target granulated particle in a compartment.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20170187041
    Abstract: A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 ?m to 1 ?m of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 ?m to 1 ?m in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.
    Type: Application
    Filed: January 5, 2017
    Publication date: June 29, 2017
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20160276668
    Abstract: An object of the present invention is to provide a carbon material for negative electrodes of non-aqueous secondary batteries having a high capacity, a high output, excellent cycle characteristics and a low irreversible capacity. The present invention relates to a carbon material for negative electrodes of non-aqueous secondary batteries, the carbon material comprising: (1) a composite carbon particles (A) containing elemental silicon, and (2) amorphous composite graphite particles (B) in which graphite particles (C) and amorphous carbon are composited.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Daigo NAGAYAMA, Tooru FUSE, Hisako KONDO