Patents by Inventor Daigo Takemura

Daigo Takemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120176730
    Abstract: An electric storage device includes an electric storage device body impregnated with an electrolyte solution, a sheath for hermetically sealing the electric storage device body, and a pressure regulator provided at the sheath. The pressure regulator includes a plurality of gas release mechanism portions. Further, the pressure regulator allows release of gases from an inside space of the sheath in which the electric storage device body exists to an outside space by causing the gases from the inside space to pass through the gas release mechanism portions in succession, and blocks entry of gases from the outside space to the inside space by the respective gas release mechanism portions. A buffer space is formed between the gas release mechanism portions by being partitioned by the gas release mechanism portions.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 12, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Daigo TAKEMURA, Tetsuya Yagi, Tatsunori Okada, Shuichi Matsumoto, Kenro Mitsuda
  • Publication number: 20120171522
    Abstract: The storage cell includes a flat roll electrode that includes a strip of positive electrode having a positive electrode current collector foil and a positive electrode layer formed thereon, a strip of negative electrode having an electrode current collector foil and a negative electrode layer formed, and a strip of electrically insulated separator, the strip of positive electrode and the strip of negative electrode being wound into a flat roll configuration with the strip of electrically insulated separator sandwiched therebetween; a sealed casing that hermetically seals the flat roll electrode impregnated with an electrolyte; a positive terminal and a negative terminal each electrically insulated from the sealed casing, connected to the positive current collector foil and the negative current collector foil, respectively.
    Type: Application
    Filed: March 12, 2012
    Publication date: July 5, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kenro Mitsuda, Daigo Takemura, Osamu Hiroi, Shigeru Aihara
  • Patent number: 8173289
    Abstract: The storage cell includes a flat roll electrode that includes a strip of positive electrode having a positive electrode current collector foil and a positive electrode layer formed thereon, a strip of negative electrode having an electrode current collector foil and a negative electrode layer formed, and a strip of electrically insulated separator, the strip of positive electrode and the strip of negative electrode being wound into a flat roll configuration with the strip of electrically insulated separator sandwiched therebetween; a sealed casing that hermetically seals the flat roll electrode impregnated with an electrolyte; a positive terminal and a negative terminal each electrically insulated from the sealed casing, connected to the positive current collector foil and the negative current collector foil, respectively.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: May 8, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenro Mitsuda, Daigo Takemura, Osamu Hiroi, Shigeru Aihara
  • Publication number: 20110281170
    Abstract: A method of manufacturing an energy storage device electrode in which breakage of electrode particles and warping of a collector are reduced, and internal resistance is lowered by lowering the contact resistance between the collector and an electrode layer. The method manufactures an electric double-layer capacitor electrode, and includes: forming a plurality of grooves that run in one direction in each of a front surface and rear surface of a collector foil; subsequently providing an electrode layer that includes plural electrode particles on each of the front surface and rear surface of the collector foil; and subsequently pressing the electrode layer toward the collector foil to move the plurality of electrode particles along the plurality of grooves until the plural electrode particles dig into the plurality of grooves.
    Type: Application
    Filed: March 17, 2010
    Publication date: November 17, 2011
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kenro Mitsuda, Kazuki Kubo, Shigeru Aihara, Daigo Takemura
  • Patent number: 7974073
    Abstract: An electric double-layer capacitor includes: a positive electrode containing a carbon material; a negative electrode containing a carbon material and a titanium oxide; and an electrolytic solution containing an ammonium salt. A weight ratio of the titanium oxide to the carbon material contained in the negative electrode is 2% by weight or more but not more than 50% by weight.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: July 5, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Daigo Takemura, Kenro Mitsuda, Tetsuo Mitani, Kazuki Kubo
  • Patent number: 7636232
    Abstract: A porous electrolytic solution reservoir which is capable of being impregnated with an electrolytic solution is provided in an exterior case so as to make contact with a separator. The average diameter of the pores in the electrolytic solution reservoir is greater than the average diameter of pores in the separator. The electrolytic solution reservoir is impregnated with a predetermined amount of electrolytic solution, so that the occupation ratio of electrolytic solution within the pores in the separator becomes 50% or more when fully charged, and the occupation ratio of electrolytic solution within the pores in the electrolytic solution reservoir becomes 100% or less when fully discharged.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: December 22, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenro Mitsuda, Yoshiyuki Takuma, Daigo Takemura, Kazuki Kubo, Tetsuo Mitani, Fumiyuki Miyamoto, Takashi Masuda
  • Publication number: 20090148759
    Abstract: An energy storage device cell includes: a capacitor cathode including a capacitor cathode collector foil, and a capacitor cathode electrode layer formed on one face of the capacitor cathode collector foil and containing microparticles of activated carbon; a first separator; a common anode including an anode collector foil having a through-hole, and an anode electrode layer formed on one face of the anode collector foil; a second separator; and a battery cathode including a battery cathode collector foil, and a battery cathode electrode layer formed on one face of the battery cathode collector foil and containing particles of a lithium-containing metal compound. The first separator is sandwiched by the capacitor cathode electrode layer and the anode electrode layer. The second separator is sandwiched by the anode collector foil and the battery cathode electrode layer.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 11, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kenro MITSUDA, Osamu Hiroi, Daigo Takemura, Shigeru Aihara
  • Publication number: 20090147442
    Abstract: The present invention relates to an electric double-layer capacitor and a method for producing same capable of evenly and rapidly doping a negative electrode layer with lithium ions. The electric double-layer capacitor comprises: a positive electrode including a positive electrode layer formed on one surface of a positive electrode current collector; a negative electrode including a negative electrode layer formed on one surface of a negative electrode current collector; a first separator disposed between the positive electrode layer and the negative electrode layer; and a second separator disposed between the positive electrode current collector and the negative electrode current collector, in which the negative electrode includes holes penetrating through the negative electrode current collector and reaching the negative electrode layer.
    Type: Application
    Filed: November 5, 2008
    Publication date: June 11, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Osamu HIROI, Daigo Takemura, Kenro Mitsuda, Shigeru Aihara, Kazuki Kubo, Yasushi Uehara
  • Publication number: 20090136832
    Abstract: The storage cell comprises a flat roll electrode that includes a strip of positive electrode having a positive electrode current collector foil and a positive electrode layer formed thereon, a strip of negative electrode having an electrode current collector foil and a negative electrode layer formed, and a strip of electrically insulated separator, the strip of positive electrode and the strip of negative electrode being wound into a flat roll configuration with the strip of electrically insulated separator sandwiched therebetween; a sealed casing that hermetically seals the flat roll electrode impregnated with an electrolyte; a positive terminal and a negative terminal each electrically insulated from the sealed casing, connected to the positive current collector foil and the negative current collector foil, respectively.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 28, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kenro MITSUDA, Daigo Takemura, Osamu Hiroi, Shigeru Aihara
  • Publication number: 20090059473
    Abstract: A porous electrolytic solution reservoir which is capable of being impregnated with an electrolytic solution is provided in an exterior case so as to make contact with a separator. The average diameter of the pores in the electrolytic solution reservoir is greater than the average diameter of pores in the separator. The electrolytic solution reservoir is impregnated with a predetermined amount of electrolytic solution, so that the occupation ratio of electrolytic solution within the pores in the separator becomes 50% or more when fully charged, and the occupation ratio of electrolytic solution within the pores in the electrolytic solution reservoir becomes 100% or less when fully discharged.
    Type: Application
    Filed: October 29, 2008
    Publication date: March 5, 2009
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Kenro Mitsuda, Yoshiyuki Takuma, Daigo Takemura, Kazuki Kubo, Tetsuo Mitani, Fumiyuki Miyamoto, Takashi Masuda
  • Patent number: 7463478
    Abstract: A porous electrolytic solution reservoir which is capable of being impregnated with an electrolytic solution is provided in an exterior case so as to make contact with a separator. The average diameter of the pores in the electrolytic solution reservoir is greater than the average diameter of pores in the separator. The electrolytic solution reservoir is impregnated with a predetermined amount of electrolytic solution, so that the occupation ratio of electrolytic solution within the pores in the separator becomes 50% or more when fully charged, and the occupation ratio of electrolytic solution within the pores in the electrolytic solution reservoir becomes 100% or less when fully discharged.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: December 9, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenro Mitsuda, Yoshiyuki Takuma, Daigo Takemura, Kazuki Kubo, Tetsuo Mitani, Fumiyuki Miyamoto, Takashi Masuda
  • Publication number: 20080112112
    Abstract: An electric double-layer capacitor includes: a positive electrode containing a carbon material; a negative electrode containing a carbon material and a titanium oxide; and an electrolytic solution containing an ammonium salt. A weight ratio of the titanium oxide to the carbon material contained in the negative electrode is 2% by weight or more but not more than 50% by weight.
    Type: Application
    Filed: October 9, 2007
    Publication date: May 15, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Daigo TAKEMURA, Kenro Mitsuda, Tetsuo Mitani, Kazuki Kubo
  • Publication number: 20060238957
    Abstract: A porous electrolytic solution reservoir which is capable of being impregnated with an electrolytic solution is provided in an exterior case so as to make contact with a separator. The average diameter of the pores in the electrolytic solution reservoir is greater than the average diameter of pores in the separator. The electrolytic solution reservoir is impregnated with a predetermined amount of electrolytic solution, so that the occupation ratio of electrolytic solution within the pores in the separator becomes 50% or more when fully charged, and the occupation ratio of electrolytic solution within the pores in the electrolytic solution reservoir becomes 100% or less when fully discharged.
    Type: Application
    Filed: April 3, 2006
    Publication date: October 26, 2006
    Applicant: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenro Mitsuda, Yoshiyuki Takuma, Daigo Takemura, Kazuki Kubo, Tetsuo Mitani, Fumiyuki Miyamoto, Takashi Masuda
  • Patent number: 6811928
    Abstract: Conventional batteries are disadvantageous in that a firm outer case must be used to maintain an electrical connection between electrodes, which has been an obstacle to size reduction. Those in which each electrode and a separator are joined with an adhesive resin suffer from conflict between adhesive strength and battery characteristics, particularly ion conductivity and internal resistivity. To solve these problems, it is an object of the invention to reduce resistance between electrodes, i.e., internal resistance of a battery to improve battery characteristics while securing both insulation function against electron conduction and ion conductivity between electrodes and also to maintain adhesive strength enough to firmly join the electrodes thereby to provide a light, compact and thin battery. The internal resistivity can be diminished by joining a positive electrode and a negative electrode with an adhesive resin layer having at least one adhesive resin layer containing a filler.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: November 2, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Shigeru Aihara, Daigo Takemura, Hisashi Shiota, Jun Aragane, Hiroaki Urushibata, Yasuhiro Yoshida, Kouji Hamano, Michio Murai, Takayuki Inuzuka
  • Patent number: 6773633
    Abstract: Conventional batteries have the problem that, when battery temperature rises above a temperature at which the separator melts and flows due to an internal short-circuit, a large short-circuit current is generated between the positive and negative electrodes, that further raises the battery temperature. As a result, the short-circuit current further increases. The inventive electrode increases its resistivity with increasing temperature, and a processing for producing the electrode is disclosed. The electrode of the invention has an electron conductive material containing a conductive filler and a resin and increases its resistivity with increasing temperature.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: August 10, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Makiko Kise, Shoji Yoshioka, Jun Aragane, Hiroaki Urushibata, Hisashi Shiota, Hideo Horibe, Shigeru Aihara, Daigo Takemura
  • Patent number: 6723467
    Abstract: Conventional separators had a function that their melting made minute holes inside the separator smaller, leading to cut off of ion conductivity in temperature increase due to unusual conditions such as short circuit. However, there was a problem that, at a temperature higher than a certain degree, not only the minute holes were closed but also the separator itself was melted to cause deformation of the separator such as shrink and generation of holes due to melting and insulation was broken. The present invention has been carried out in order to solve the above problems. The separator for batteries of the present invention comprises a first porous layer (3a) containing a thermoplastic resin as a main component and a second porous layer (3b) laminated on the first porous layer (3a), which has higher heat resistance than that of the first porous layer (3a).
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: April 20, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Yoshida, Osamu Hiroi, Kouji Hamano, Daigo Takemura, Sigeru Aihara, Hisashi Shiota, Jun Aragane, Hiroaki Urushibata, Michio Murai, Takayuki Inuzuka
  • Patent number: 6697615
    Abstract: Communication quality measured between a base station and a mobile station in a radiotelephone system is associated with positional information at a point where such measurement is made. A radio communication link is established between a mobile station, i.e., a data gathering apparatus 10, and a base station 11, and data is transferred therebetween at a predetermined transmission rate to determine the maximum transmission rate. If the transmission is done correctly, the positional information is determined at that point. The positional information is obtained by use of a GPS receiver 18, which receives signals sent from satellites 16 orbiting around the earth. The resulting positional information is associated with the transmission rate and stored in a memory 20, or displayed on a display unit 22.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: February 24, 2004
    Assignee: Motorola, Inc.
    Inventor: Daigo Takemura
  • Patent number: 6696203
    Abstract: The battery of the present invention comprises the electrode which contains the pre-determined amount of electronically conductive material at which resistance increases in accordance with temperature rise and conductive agent; the electrode wherein the ratio of the total amount of the electronically conductive material and the conductive agent to the active material is set to a pre-determined value; and the electrode wherein the average particle size of the conductive agent based on the average particle size of the electronically conductive material is in a pre-determined range. The coducitive material contains an electrically conductive filler and a crystalline resin. The conductive material and the coductive agent are contacted with the active material. A significant reduction in short circuit current is achieved over a defined range of conductive agent particle size.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: February 24, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Makiko Kise, Syoji Yoshioka, Hironori Kuriki, Hiroaki Urushibata, Hisashi Shiota, Jun Aragane, Takashi Nishimura, Shigeru Aihara, Daigo Takemura
  • Patent number: 6692543
    Abstract: A method for manufacturing a lithium ion secondary battery comprising preparing a positive electrode (3) where a positive electrode active material (7) is joined with a positive electrode collector (6), a negative electrode (5) where a negative electrode active material (9) is joined with a negative electrode collector (10), and a separator (4) for retaining the electrolytes including lithium ions, being arranged between the positive electrode (3) and the negative electrode (5), the process of supplying adhesive solution applied on the separator with a second solvent different from a first solvent after applying the adhesive resin solution, where adhesive resin (11) is dissolved in the above first solvent, to the separator (4), and the process of forming an electrode laminate by sticking the positive electrode (3) and the negative electrode (5) to the separator (4).
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: February 17, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kouji Hamano, Yasuhiro Yoshida, Michio Murai, Takayuki Inuzuka, Hisashi Shiota, Jun Aragane, Hiroaki Urushibata, Shigeru Aihara, Daigo Takemura
  • Patent number: 6677074
    Abstract: Conventional batteries have a problem that, in case the battery temperature should rise to 100° C. or higher due to an internal short-circuit, etc., a large short-circuit current develops to generate heat. It follows that the battery temperature further increases, which can result in a further increase of the short-circuit current. Further, some of electrode structures involve reduction in discharge capacity. These problems are solved by a battery in which an electron conductive material (9), being in contact with an active material (8) in an electrode, comprises a conductive filler and a resin so that the electrode may increase its resistivity with a temperature rise, and the ratio of the particle size of the electron conductive material (9) to that of the active material (8) is in a range of from 0.1 to 20.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: January 13, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takashi Nishimura, Makiko Kise, Syoji Yoshioka, Jun Aragane, Hiroaki Urushibata, Hisashi Shiota, Shigeru Aihara, Daigo Takemura