Patents by Inventor Daiji Morita

Daiji Morita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230321914
    Abstract: An additive manufacturing method includes a step of measuring a temperature of an object of processing or a shaping material and outputting temperature data, a step of correcting basic commands based on a basic processing program and the temperature data, and determining post-correction commands including a material supply command, a heat source supply unit command, a drive command, and a gas supply command, a step of supplying the shaping material to a processing position of a shaped article based on the material supply command, a step of supplying a heat source to melt the shaping material supplied to the processing position based on the heat source supply unit command, a step of changing the relative position between the processing position and the shaped article based on the drive command, and a step of supplying, to the processing position, a shielding gas based on the gas supply command.
    Type: Application
    Filed: October 15, 2020
    Publication date: October 12, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Nobuhiro SHINOHARA, Daiji MORITA
  • Publication number: 20230294170
    Abstract: A 3D printing apparatus includes: a machining optical system including an objective lens, and configured to radiate machining light to a machining position; a measurement illumination unit that supplies illumination light for measuring a size of an object formed; a light-receiving element that detects reflected light that is the illumination light reflected by the object; a light-receiving optical system that concentrates the reflected light on the light-receiving element; a calculation unit that computes, through calculation using a detection result of the reflected light in the light-receiving element, a width of the object in a third direction perpendicular to a first direction in which the machining position is moved with respect to a workpiece and a second direction in which beads are stacked; and a control unit that controls a machining condition for forming the beads based on a computation result of the width of the object.
    Type: Application
    Filed: August 26, 2020
    Publication date: September 21, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shigeru TAKUSHIMA, Daiji MORITA
  • Publication number: 20230131125
    Abstract: An additive manufacturing apparatus manufactures a shaped object by stacking layers in each of which unit beads that are solidified products of a molten material are laid side by side. The additive manufacturing apparatus includes a material supply unit that supplies a wire as the material to a workpiece, an irradiation unit that emits a laser beam for melting the material supplied, and a controller device that controls the material supply unit and the irradiation unit to form the unit beads. In the formation of unit beads brought into contact with each other to form the layer, the controller device performs control such that a formed unit bead is flattened by irradiation with the beam, and a unit bead is formed in contact with the unit bead that has been flattened.
    Type: Application
    Filed: April 23, 2020
    Publication date: April 27, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Daiji MORITA, Nobuhiro SHINOHARA, Yoshikazu UKAI
  • Patent number: 11480947
    Abstract: A control information generation device generates control information for controlling an additive manufacturing apparatus that manufactures a layer shape using a bead that is a manufactured object formed by adding a molten processing material to a target surface while moving a processing position along a manufacturing path, and manufactures a three-dimensional shape in which the layer shapes are stacked. The device includes: a bead width correction unit that obtains a corrected width on the basis of the manufacturing path and a reference width of a cross section of the bead, the corrected width being a width of the cross section for allowing the beads to be adjacent to each other without overlapping; a path correction unit that obtains a corrected path on the basis of the manufacturing path and the corrected width; and a control information output unit that outputs control information indicating the corrected path and the corrected width.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: October 25, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kenji Iriguchi, Nobuhiro Shinohara, Daiji Morita, Nobuyuki Sumi, Shun Kayashima
  • Publication number: 20220331904
    Abstract: A machining program generation device that generates a machining program for controlling a 3D printing apparatus to form an object by stacking a plurality of layers, includes: a machining route generation unit that extracts a plurality of support points that are based on an end point, an intersection point, and a bending point of the machining path from machining path data indicating a shape and a position of the machining path for forming each of the plurality of layers, and generates a machining route by adding, to the machining path, an order of shaping indicating that shaping of the support points is to be executed first and then shaping of a gap line segment connecting the plurality of support points shaped is to be executed; and a machining program generation unit that generates a machining program for controlling the 3D printing apparatus according to the machining route.
    Type: Application
    Filed: October 3, 2019
    Publication date: October 20, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Nobuhiro SHINOHARA, Daiji MORITA
  • Publication number: 20220324057
    Abstract: An additive manufacturing apparatus that forms an object by repeating additive machining of melting a machining material and adding, onto a workpiece, the machining material solidified includes: a height measurement unit that measures a height of the object formed at a machining position; and a control unit that controls a machining condition for adding the machining material to the machining position on the basis of a measurement result provided by the height measurement unit.
    Type: Application
    Filed: August 7, 2019
    Publication date: October 13, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shigeru TAKUSHIMA, Daiji MORITA, Nobuyuki SUMI, Satoshi HATTORI, Takafumi FUJII, Shun KAYASHIMA
  • Patent number: 11383327
    Abstract: An additive manufacturing method uses an additive manufacturing device performing additive machining by controlling a machining head including a nozzle to supply columnar build material to a machining region on a target surface and a beam nozzle to irradiate the machining region with beam melting the build material, the nozzle and the beam nozzle being provided non-coaxially. When additive machining is performed in a state where the machining head is located with central axes of the beam and the build material being positioned on a single vertical plane, the machining path is divided into divided machining paths such that the machining head is moved in one direction along a direction of the build-material central axis when motion of the machining head is projected onto a plane perpendicular to an irradiation direction of the beam, and the machining head is moved along each divided machining path to perform additive machining.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: July 12, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Daiji Morita, Nobuhiro Shinohara, Satoshi Hattori
  • Patent number: 11351736
    Abstract: An NC device, which is a numerical control device, includes: a program analyzing unit that analyzes a machining program to obtain a movement path along which to move a supply position of a material on a workpiece; a storage temperature extracting unit that extracts, from data on surface temperature of the workpiece, storage temperature in an area including the movement path on the workpiece; a layering volume calculating unit that calculates a volume of a layer forming an object on the basis of a relation between the storage temperature and a volume of the material that solidifies at the storage temperature in a given time; and a layering shape changing unit that changes a shape of the layer on the basis of the volume of the layer.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 7, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Seiji Uozumi, Nobuhiro Shinohara, Daiji Morita, Nobuyuki Sumi
  • Publication number: 20220143928
    Abstract: An NC device, which is a numerical control device, includes: a program analyzing unit that analyzes a machining program to obtain a movement path along which to move a supply position of a material on a workpiece; a storage temperature extracting unit that extracts, from data on surface temperature of the workpiece, storage temperature in an area including the movement path on the workpiece; a layering volume calculating unit that calculates a volume of a layer forming an object on the basis of a relation between the storage temperature and a volume of the material that solidifies at the storage temperature in a given time; and a layering shape changing unit that changes a shape of the layer on the basis of the volume of the layer.
    Type: Application
    Filed: June 25, 2019
    Publication date: May 12, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Seiji UOZUMI, Nobuhiro SHINOHARA, Daiji MORITA, Nobuyuki SUMI
  • Patent number: 11325190
    Abstract: An additive manufacturing method includes: forming first and second linear beads parallel to each other under a same predetermined formation condition such that a gap having a predetermined width is formed between the first and second linear beads; forming a third linear bead in the gap under the same formation condition; forming, after forming the third linear bead, the linear bead that is formed as an even-numbered line under the formation condition such that the linear bead is parallel to the first linear bead and a gap having a predetermined width is formed between the linear bead formed as an even-numbered line and a linear bead formed two lines before; and forming, after forming the third linear bead, the linear bead that is formed as an odd-numbered line in the gap between the linear bead formed immediately before and the linear bead formed three lines before under the formation condition.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: May 10, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Daiji Morita, Nobuhiro Shinohara, Satoshi Hattori
  • Publication number: 20220043430
    Abstract: A control information generation device generates control information for controlling an additive manufacturing apparatus that manufactures a layer shape using a bead that is a manufactured object formed by adding a molten processing material to a target surface while moving a processing position along a manufacturing path, and manufactures a three-dimensional shape in which the layer shapes are stacked. The device includes: a bead width correction unit that obtains a corrected width on the basis of the manufacturing path and a reference width of a cross section of the bead, the corrected width being a width of the cross section for allowing the beads to be adjacent to each other without overlapping; a path correction unit that obtains a corrected path on the basis of the manufacturing path and the corrected width; and a control information output unit that outputs control information indicating the corrected path and the corrected width.
    Type: Application
    Filed: June 14, 2019
    Publication date: February 10, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kenji IRIGUCHI, Nobuhiro SHINOHARA, Daiji MORITA, Nobuyuki SUMI, Shun KAYASHIMA
  • Publication number: 20210370409
    Abstract: An additive manufacturing apparatus is an additive manufacturing apparatus that performs an additive manufacturing process by depositing a molten fabrication material at a working position while moving the working position on a workpiece, and forms a manufactured product by repeating the additive manufacturing process. The apparatus includes a height measurement unit that outputs a measurement result representing the height of the manufactured product having already been formed on the workpiece at a measurement position, and a control unit that controls a machining condition to be used when new deposition is made at the measurement position, in accordance with the measurement result.
    Type: Application
    Filed: November 9, 2018
    Publication date: December 2, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shigeru TAKUSHIMA, Hiroyuki KAWANO, Yoshitsugu SAWA, Daiji MORITA
  • Patent number: 11179802
    Abstract: A laser machining apparatus includes: a laser oscillator that emits laser light having a plurality of wavelengths; a transmission diffractive optical element that allows the laser light to pass therethrough; a machining lens that concentrates the laser light that has passed through the transmission diffractive optical element; a distance adjustment mechanism that changes a distance between the transmission diffractive optical element and the machining lens; and an angle adjustment mechanism that changes an angle of the transmission diffractive optical element to switch between a state in which the laser light is dispersed by the transmission diffractive optical element and then enters the machining lens and a state in which the laser light enters the machining lens without being dispersed by the transmission diffractive optical element.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: November 23, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naoyuki Nakamura, Masaki Seguchi, Tomotaka Katsura, Daiji Morita
  • Publication number: 20210323092
    Abstract: An additive manufacturing apparatus includes: a material supply unit that supplies a build material to a process area of an additive target surface; an irradiation unit that irradiates the process area with a laser beam that melts the build material; and a control device that controls the material supply unit and the irradiation unit for creating at least a part of an object using a dot-shaped bead, the dot-shaped bead being formed of the build material melted by radiation of the laser beam. The additive manufacturing apparatus can improve the shape accuracy of the object.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 21, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Daiji MORITA, Nobuhiro SHINOHARA, Yoshikazu NAKANO, Yoshikazu UKAI
  • Publication number: 20210316368
    Abstract: An additive manufacturing method includes: forming first and second linear beads parallel to each other under a same predetermined formation condition such that a gap having a predetermined width is formed between the first and second linear beads; forming a third linear bead in the gap under the same formation condition; forming, after forming the third linear bead, the linear bead that is formed as an even-numbered line under the formation condition such that the linear bead is parallel to the first linear bead and a gap having a predetermined width is formed between the linear bead formed as an even-numbered line and a linear bead formed two lines before; and forming, after forming the third linear bead, the linear bead that is formed as an odd-numbered line in the gap between the linear bead formed immediately before and the linear bead formed three lines before under the formation condition.
    Type: Application
    Filed: October 18, 2018
    Publication date: October 14, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Daiji MORITA, Nobuhiro SHINOHARA, Satoshi HATTORI
  • Publication number: 20210308796
    Abstract: An additive manufacturing method uses an additive manufacturing device performing additive machining by controlling a machining head including a nozzle to supply columnar build material to a machining region on a target surface and a beam nozzle to irradiate the machining region with beam melting the build material, the nozzle and the beam nozzle being provided non-coaxially. When additive machining is performed in a state where the machining head is located with central axes of the beam and the build material being positioned on a single vertical plane, the machining path is divided into divided machining paths such that the machining head is moved in one direction along a direction of the build- material central axis when motion of the machining head is projected onto a plane perpendicular to an irradiation direction of the beam, and the machining head is moved along each divided machining path to perform additive machining.
    Type: Application
    Filed: October 24, 2018
    Publication date: October 7, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Daiji MORITA, Nobuhiro SHINOHARA, Satoshi HATTORI
  • Patent number: 11108214
    Abstract: A wavelength combining laser apparatus includes: a semiconductor laser emitting laser beams in an optical-axial direction perpendicular to a laser beam combining direction; a wavelength combining element combining the laser beams in the laser beam combining direction into a single laser beam; a cross-coupling reduction optical system having positive power in the laser beam combining direction perpendicular to an optical axis of the single laser beam output from the wavelength combining element; and a partially-reflective mirror reflecting the single laser beam having passed through the cross-coupling reduction optical system and also allowing the single laser beam to transmit through and exit the partially-reflective mirror.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 31, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Nobutaka Kobayashi, Tomotaka Katsura, Daiji Morita, Junichi Nishimae, Tomohiro Kyoto
  • Patent number: 10864600
    Abstract: A laser machining device includes a plurality of oscillators to emit laser beams having different wavelengths from each other; a machining head to emit laser beams emitted from the respective oscillators to a machining object; a plurality of transmission fibers to transmit the laser beams to the machining head; a wavelength dispersion element; and a focusing lens to superpose the laser beams emitted from the transmission fibers, wherein the wavelength dispersion element is arranged at a position at which the laser beams are superposed by the focusing lens.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: December 15, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Daiji Morita, Tomotaka Katsura, Hiroaki Kurokawa
  • Patent number: 10840670
    Abstract: A laser oscillator includes: an external resonator configured to include laser media to emit laser beams having different wavelengths; and a partially reflective mirror to transmit part of the laser beams and reflect and return a remainder toward the laser media. The external resonator includes therein: a diffraction grating to perform wavelength coupling on the laser beams having different wavelengths emitted from the laser media so as to superimpose the laser beams into one laser beam and to emit, to the partially reflective mirror, the one laser beam; and a prism that is placed between the laser media and the diffraction grating and that superimposes the laser beams into one laser beam on the diffraction grating, the prism including two surfaces forming an apex angle, one of the two surfaces being an incident surface and another of the two surfaces being an exit surface.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: November 17, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Junichi Nishimae, Tomotaka Katsura, Daiji Morita, Hiroaki Kurokawa
  • Patent number: 10714902
    Abstract: A laser oscillator includes: a plurality of laser media to emit laser beams having different wavelengths; a diffraction grating to emit, in a superimposed state, the laser beams incident from the laser media; a partially reflective element to reflect part of the laser beams emitted from the diffraction grating and return the part of the laser beams to the diffraction grating, and to transmit a remainder; and a plurality of lenses each disposed between a corresponding one of the laser media and the diffraction grating. The lenses are each disposed in an optical path formed between a corresponding one of the laser media and the diffraction grating, and the lenses superimpose the laser beams from the laser media on an incident surface of the diffraction grating such that the laser beams have an equal outer diameter.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: July 14, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Junichi Nishimae, Tomotaka Katsura, Daiji Morita, Hiroaki Kurokawa