Patents by Inventor Daishi Ueno

Daishi Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10574058
    Abstract: A power conversion apparatus includes a power converter, a target command controller, a feedback controller, and a gain adjustor. The power converter is configured to convert first power supplied from a power generation source into second power. The target command controller is configured to increase or decrease a target command so as to cause the first power to follow maximum suppliable power of the power generation source. The feedback controller is configured to control the power converter by feedback control that is based on a deviation between the target command and at least one of a supplied voltage and a supplied current supplied from the power generation source to the power converter. The gain adjustor is configured to adjust a gain of the feedback control based on at least one of the supplied voltage, the supplied current, and the target command.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 25, 2020
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Hirotaka Toujinbara, Takashi Kuboyama, Daishi Ueno
  • Publication number: 20170047743
    Abstract: A power conversion apparatus includes a power converter, a target command controller, a feedback controller, and a gain adjustor. The power converter is configured to convert first power supplied from a power generation source into second power. The target command controller is configured to increase or decrease a target command so as to cause the first power to follow maximum suppliable power of the power generation source. The feedback controller is configured to control the power converter by feedback control that is based on a deviation between the target command and at least one of a supplied voltage and a supplied current supplied from the power generation source to the power converter. The gain adjustor is configured to adjust a gain of the feedback control based on at least one of the supplied voltage, the supplied current, and the target command.
    Type: Application
    Filed: October 26, 2016
    Publication date: February 16, 2017
    Applicant: Kabushiki Kaisha Yaskawa Denki
    Inventors: Hirotaka TOUJINBARA, Takashi Kuboyama, Daishi Ueno
  • Patent number: 9243939
    Abstract: A flow volume measurement device or a flow velocity measurement device include a measurement cell including a main pipe, an incident tube that is connected to the main pipe, an emission tube that is connected to the main pipe, and a first purge-fluid supply tube that is connected to the incident tube, a purge-fluid supply unit that supplies purge fluid into the first purge-fluid supply tube of the measurement cell, a light emitting unit that emits a laser beam to the measurement cell, a light receiving unit that receives the laser beam emitted from the light emitting unit and having passed through the measurement cell, and outputs a received amount of light as a light reception signal, a calculation unit that calculates a flow volume or a flow velocity of exhaust fluid flowing in the measurement cell, based on a light reception signal output from the light receiving unit.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 26, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Atsushi Takita, Minoru Danno, Shinichiro Asami, Kageharu Moriyama, Daishi Ueno, Ichiro Awaya, Tadashi Aoki
  • Patent number: 9051863
    Abstract: An object of the present invention is to provide a flue gas purifying device that can efficiently decrease nitrogen oxides in flue gas.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 9, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki, Kageharu Moriyama
  • Patent number: 8607547
    Abstract: An object of the present invention is to provide a flue gas purifying device that can suppress leakage of ammonia and can efficiently decrease nitrogen oxides in flue gas. The object is achieved by a flue gas purifying device including: an exhaust pipe; a urea-water injecting unit that injects urea water into the exhaust pipe; a catalytic unit that includes a urea SCR catalyst that promotes a reaction between ammonia and nitrogen oxides and a support mechanism that supports the urea SCR catalyst in the exhaust pipe, and is arranged on a downstream side to a position where urea water is injected; a concentration measuring unit arranged on a downstream side to the catalytic unit in a flow direction of flue gas to measure an ammonia concentration in flue gas having passed through the urea SCR catalyst; and a control unit that controls injection of urea water by the urea-water injecting unit based on an ammonia concentration measured by the concentration measuring unit.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: December 17, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki
  • Patent number: 8468807
    Abstract: An exhaust gas purification system which, in a wider temperature range, can reduce and remove nitrogen oxides in an exhaust gas by a reduction catalyst with the use of hydrogen as a reducing agent is provided. The exhaust gas purification system has an electronic control device (41) which controls an EGR valve (4) and an EGR pipe (5) so that the concentration of oxygen in the exhaust gas obtained from a data map based on the state of an engine (10) becomes less than a predetermined value, and which controls a microreactor (19) so that hydrogen is added to the exhaust gas when the concentration of oxygen in the exhaust gas is less than the predetermined value.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: June 25, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masatoshi Katsuki, Masazumi Tanoura, Shuuji Fujii, Daishi Ueno, Yuko Ujihara
  • Publication number: 20120323502
    Abstract: A flow volume measurement device or a flow velocity measurement device include a measurement cell including a main pipe, an incident tube that is connected to the main pipe, an emission tube that is connected to the main pipe, and a first purge-fluid supply tube that is connected to the incident tube, a purge-fluid supply unit that supplies purge fluid into the first purge-fluid supply tube of the measurement cell, a light emitting unit that emits a laser beam to the measurement cell, a light receiving unit that receives the laser beam emitted from the light emitting unit and having passed through the measurement cell, and outputs a received amount of light as a light reception signal, a calculation unit that calculates a flow volume or a flow velocity of exhaust fluid flowing in the measurement cell, based on a light reception signal output from the light receiving unit.
    Type: Application
    Filed: November 22, 2010
    Publication date: December 20, 2012
    Inventors: Masazumi Tanoura, Kenji Muta, Atsushi Takita, Minoru Danno, Shinichiro Asami, Kageharu Moriyama, Daishi Ueno, Ichiro Awaya, Tadashi Aoki
  • Patent number: 8281577
    Abstract: An exhaust gas purification system, which upgrades exhaust gas purification while curtailing an increase in an operating cost, is disclosed. The exhaust gas purification system comprises an SCR catalyst for reducing and removing nitrogen oxides in an exhaust gas from an engine (10) by bringing the nitrogen oxides into contact with a reducing agent, oxidation catalysts (11, 17) for oxidizing gas components in the exhaust gas, a water electrolysis device (24) for producing oxygen by electrolyzing water, and an oxygen supply pipe (29) for supplying the oxygen produced by the water electrolysis device (24) to the exhaust gas.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 9, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masazumi Tanoura, Shuuji Fujii, Masatoshi Katsuki, Daishi Ueno, Yuko Ujihara
  • Patent number: 8222724
    Abstract: An object is to provide a semiconductor element module having high reliability, superior electric connection and thermal connection and capable of securing sufficient cooling performance, and also to provide a method for manufacturing the same. The semiconductor element module (1) comprises an IGBT (2) and a diode (3) having electrodes formed on surfaces of both sides thereof, a ceramic substrate (7), in which thermal conductivity is high, having wiring circuit layers (4, 5) formed on the surface thereof for bonding to surfaces of one side of the IGBT (2) and the diode (3), a ceramic substrate (8), in which thermal conductivity is high, having a wiring circuit layer (6) formed on the surface thereof for bonding to surfaces of other side of the IGBT (2) and the diode (3), and a sealing member (11) which is sandwiched between the outer edges of the ceramic substrates (7, 8) for sealing inside thereof; and these members are bonded by room-temperature bonding.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 17, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Daishi Ueno, Taro Wada, Masahiro Funayama, Yoshikatsu Kuroda, Yuichi Kondo, Shinichi Kobayashi, Koji Nakano, Kenj Fujiwara, Teruo Takeshita
  • Publication number: 20120047879
    Abstract: A flue gas purifying device includes an exhaust pipe that guides flue gas discharged from an internal combustion engine; a catalytic unit that is arranged on a downstream side to the internal combustion engine in a flow direction of flue gas and includes a nitrogen-oxide storage-reduction catalyst that stores nitrogen oxides contained in flue gas and a support mechanism that is arranged in the exhaust pipe and supports the nitrogen-oxide storage-reduction catalyst in the exhaust pipe; a reducing-agent injecting unit that injects a reducing agent to the catalytic unit in the exhaust pipe; a concentration measuring unit that is arranged on a downstream side to the catalytic unit in the flow direction of flue gas and measures a concentration of nitrogen oxides in flue gas having passed through the nitrogen-oxide storage-reduction catalyst; and a control unit that controls whether to inject the reducing agent from the reducing-agent injecting unit based on a concentration of nitrogen oxides measured by the concen
    Type: Application
    Filed: January 27, 2010
    Publication date: March 1, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yuuko Ujihara, Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki
  • Publication number: 20110293483
    Abstract: An object of the present invention is to provide a flue gas purifying device that can efficiently decrease nitrogen oxides in flue gas.
    Type: Application
    Filed: January 27, 2010
    Publication date: December 1, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki, Kageharu Moriyama
  • Publication number: 20110252771
    Abstract: An object of the present invention is to provide a flue gas purifying device that can suppress leakage of ammonia and can efficiently decrease nitrogen oxides in flue gas. The object is achieved by including: an exhaust pipe that guides flue gas discharged from an internal combustion engine; a urea-water injecting unit that injects urea water into the exhaust pipe; a catalyst unit that includes a urea SCR catalyst that promotes a reaction between ammonia produced from injected urea water and nitrogen oxides and a support mechanism arranged inside of the exhaust pipe on a downstream side to a position where urea water is injected in a flow direction of the flue gas to support the urea SCR catalyst; an ammonia-concentration measuring unit that measures an ammonia concentration in flue gas at a measurement position in a region where the SCR catalyst is arranged; and an injection control unit that controls injection of urea water based on a measurement result acquired by the ammonia-concentration measuring unit.
    Type: Application
    Filed: December 8, 2009
    Publication date: October 20, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takashi Fujinaga, Masazumi Tanoura, Daishi Ueno, Yasushi Mitsuyama
  • Publication number: 20110239629
    Abstract: An object of the present invention is to provide a flue gas purifying device that can suppress leakage of ammonia and can efficiently decrease nitrogen oxides in flue gas. The object is achieved by a flue gas purifying device including: an exhaust pipe; a urea-water injecting unit that injects urea water into the exhaust pipe; a catalytic unit that includes a urea SCR catalyst that promotes a reaction between ammonia and nitrogen oxides and a support mechanism that supports the urea SCR catalyst in the exhaust pipe, and is arranged on a downstream side to a position where urea water is injected; a concentration measuring unit arranged on a downstream side to the catalytic unit in a flow direction of flue gas to measure an ammonia concentration in flue gas having passed through the urea SCR catalyst; and a control unit that controls injection of urea water by the urea-water injecting unit based on an ammonia concentration measured by the concentration measuring unit.
    Type: Application
    Filed: December 4, 2009
    Publication date: October 6, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Kenji Muta, Minoru Danno, Masatoshi Katsuki, Yuuko Ujihara, Daishi Ueno, Takashi Fujinaga, Eiji Kato, Shinichiro Asami, Tadashi Aoki
  • Publication number: 20110106397
    Abstract: Provided is a fluid measuring device for measuring flow speed of a fluid in detail. A fluid measuring device (10) is provided with a plurality of detecting sections (30, 40) and a calculating section (50). The detecting sections are arranged with a space in between on a pipe line (22) wherein a fluid flows, and the detecting sections detect parameters which change corresponding to a change of the state of the fluid. The calculating section calculates the flow speed of the fluid, based on the time shift (?T) of the parameter change detected by the pair of detecting sections and on a distance (L) along the pipe line of the pair of detecting sections.
    Type: Application
    Filed: December 3, 2008
    Publication date: May 5, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji Muta, Masazumi Tanoura, Atsushi Takita, Daishi Ueno, Tadashi Aoki, Mitsunobu Sekiya
  • Publication number: 20110062600
    Abstract: An object is to provide a semiconductor element module having high reliability, superior electric connection and thermal connection and capable of securing sufficient cooling performance, and also to provide a method for manufacturing the same. The semiconductor element module (1) comprises an IGBT (2) and a diode (3) having electrodes formed on surfaces of both sides thereof, a ceramic substrate (7), in which thermal conductivity is high, having wiring circuit layers (4, 5) formed on the surface thereof for bonding to surfaces of one side of the IGBT (2) and the diode (3), a ceramic substrate (8), in which thermal conductivity is high, having a wiring circuit layer (6) formed on the surface thereof for bonding to surfaces of other side of the IGBT (2) and the diode (3), and a sealing member (11) which is sandwiched between the outer edges of the ceramic substrates (7, 8) for sealing inside thereof; and these members are bonded by room-temperature bonding.
    Type: Application
    Filed: February 14, 2008
    Publication date: March 17, 2011
    Inventors: Daishi Ueno, Taro Wada, Masahiro Funayama, Yoshikatsu Kuroda, Yuichi Kondo, Shinichi Kobayashi, Koji Nakano, Kenj Fujiwara, Teruo Takeshita
  • Publication number: 20110029261
    Abstract: Provided is a fluid measurement device and the like for measuring flow velocity of a fluid in detail.
    Type: Application
    Filed: December 3, 2008
    Publication date: February 3, 2011
    Inventors: Kenji Muta, Masazumi Tanoura, Atsushi Takita, Daishi Ueno, Tadashi Aoki, Mitsunobu Sekiya, Hikaru Tsukakoshi, Kiyoshi Mine
  • Publication number: 20100287911
    Abstract: An exhaust gas purification system which, in a wider temperature range, can reduce and remove nitrogen oxides in an exhaust gas by a reduction catalyst with the use of hydrogen as a reducing agent is provided. The exhaust gas purification system has an electronic control device (41) which controls an EGR valve (4) and an EGR pipe (5) so that the concentration of oxygen in the exhaust gas obtained from a data map based on the state of an engine (10) becomes less than a predetermined value, and which controls a microreactor (19) so that hydrogen is added to the exhaust gas when the concentration of oxygen in the exhaust gas is less than the predetermined value.
    Type: Application
    Filed: September 3, 2008
    Publication date: November 18, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masatoshi Katsuki, Masazumi Tanoura, Shuuji Fujii, Daishi Ueno, Yuko Ujihara
  • Publication number: 20100242864
    Abstract: An exhaust gas purification system, which upgrades exhaust gas purification while curtailing an increase in an operating cost, is disclosed. The exhaust gas purification system comprises an SCR catalyst for reducing and removing nitrogen oxides in an exhaust gas from an engine (10) by bringing the nitrogen oxides into contact with a reducing agent, oxidation catalysts (11, 17) for oxidizing gas components in the exhaust gas, a water electrolysis device (24) for producing oxygen by electrolyzing water, and an oxygen supply pipe (29) for supplying the oxygen produced by the water electrolysis device (24) to the exhaust gas.
    Type: Application
    Filed: September 3, 2008
    Publication date: September 30, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masazumi Tanoura, Shuuji Fujii, Masatoshi Katsuki, Daishi Ueno, Yuko Ujihara