Patents by Inventor Daisuke Ichigozaki

Daisuke Ichigozaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210281153
    Abstract: A rotating electrical machine capable of obtaining a higher torque while limiting the amount of permanent magnets used. A magnetic pole of a rotor includes an auxiliary magnet embedded in a rotor core and at least one main magnet arranged on an outer circumferential side than the auxiliary magnet of the rotor. In each magnetic pole, the distance from an end of the main magnet, the end facing the auxiliary magnet, to the auxiliary magnet facing the main magnet is shorter than the length of the main magnet in the radial direction.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 9, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiu KANADA, Daisuke ICHIGOZAKI, Kazuaki HAGA, Motoki HIRAOKA, Daichi MARUYAMA, Hisamitsu TOSHIDA, Kyoko NAKAMURA, Akira YAMASHITA
  • Publication number: 20210272751
    Abstract: The production method of a rare earth magnet of the present disclosure includes a coated magnetic powder preparation step, a mixed powder preparation step, and a pressure sintering step. In the coated magnetic preparation step, a zinc-containing coating 12 is formed on the particle surface of a samarium-iron-nitrogen-based magnetic powder to obtain a coated magnetic powder 14. In the mixed powder preparation step, a binder powder 20 having a melting point not higher than the melting point of the coating 12 and the coated magnetic powder 14 are mixed to obtain a mixed powder. In the pressure sintering step, denoting as T1° C. the temperature at which the peak disappears in an X-ray diffraction pattern of the binder powder 20 and as T2° C. the temperature at which the magnetic phase in the samarium-iron-nitrogen-based magnetic powder 10 decomposes, the mixed powder is pressure-sintered at T1° C. or more and (T2?50)° C. or less.
    Type: Application
    Filed: December 29, 2020
    Publication date: September 2, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke ICHIGOZAKI, Tatsuhiko HIRANO, Noritsugu SAKUMA, Akihito KINOSHITA, Masaaki ITO
  • Publication number: 20200266691
    Abstract: A manufacturing method of a core for a rotary electric machine, the method includes inserting a permanent magnet that is not yet magnetized in a magnet insertion hole that is formed in a rotor core; injecting a magnet fixing material in the magnet insertion hole; curing the magnet fixing material by heating the rotor core and the permanent magnet; and magnetizing the permanent magnet before a temperature of the rotor core and the permanent magnet decreases to a normal temperature, after the curing of the magnet fixing material.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 20, 2020
    Applicants: AISIN AW CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naomi INOUE, Hiroaki WAKIMOTO, Tsuyoshi MIYAJI, Motoki HIRAOKA, Daisuke ICHIGOZAKI
  • Publication number: 20200098497
    Abstract: To provide a rare earth magnet in which particles of SmFeN powder are bound using a Zn powder, wherein generation of a knick at a magnetic field of around 0 is prevented and high residual magnetic flux density Br is thereby achieved, and a production method thereof. A rare earth magnet including a main phase containing Sm, Fe, and N, at least a part of the main phase having a Th2Zn17-type or Th2Ni17-type crystal structure, a sub-phase containing Zn and Fe and being present around the main phase, and an intermediate phase containing Sm, Fe and N as well as Zn and being present between the main phase and the sub-phase, wherein the average Fe content in the sub-phase is 33 at % or less relative to the whole sub-phase.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 26, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOHOKU UNIVERSITY
    Inventors: Noritsugu SAKUMA, Tetsuya SHOJI, Akihito KINOSHITA, Kazuaki HAGA, Daisuke ICHIGOZAKI, Yukio TAKADA, Satoshi SUGIMOTO, Masashi MATSUURA
  • Publication number: 20200098496
    Abstract: To provide a rare earth magnet in which particles of SmFeN powder are bound using a Zn alloy powder, wherein generation of a knick at a magnetic field of around 0 is prevented, and a production method thereof. A rare earth magnet including a main phase containing Sm, Fe, and N, at least a part of the main phase having a Th2Zn17-type or Th2Ni17-type crystal structure, a sub-phase containing at least either Si or Sm, and Zn and Fe and being present around the main phase, and an intermediate phase containing Sm, Fe and N as well as Zn and being present between the main phase and the sub-phase, wherein the average Fe content in the sub-phase is 33 at % or less relative to the whole sub-phase, and the average total content of Si and Sm in the sub-phase is from 1.4 to 4.5 at % relative to the whole subs-phase.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 26, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOHOKU UNIVERSITY
    Inventors: Akihito KINOSHITA, Noritsugu SAKUMA, Tetsuya SHOJI, Daisuke ICHIGOZAKI, Tatsuhiko HIRANO, Kazuaki HAGA, Yukio TAKADA, Satoshi SUGIMOTO, Masashi MATSUURA
  • Patent number: 10546688
    Abstract: Provided is a method for producing a rare-earth magnet that can resolve a problem of deterioration of the residual magnetization and coercive force of the rare-earth magnet due to spring-back in producing the rare-earth magnet through performing hot deformation processing of upsetting on a sintered body. The method includes a first step of producing the sintered body through press-forming of magnetic powder for a rare-earth magnet, and a second step of producing a rare-earth magnet precursor through hot deformation processing of upsetting in which the sintered body is placed within a plastic processing mold and is pressurized in a predetermined direction so as to impart magnetic anisotropy to the sintered body, and performing cooling of the rare-earth magnet precursor while a predetermined pressure is kept being applied thereto in the predetermined direction, so that the rare-earth magnet is produced.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: January 28, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke Ichigozaki, Takeshi Yamamoto
  • Publication number: 20190311851
    Abstract: The present disclosure provides a technology of further improving magnetic properties (such as residual magnetic flux density) of Nd—Fe—B magnets. The method of producing an Nd—Fe—B magnet of the present disclosure comprises: producing a sintered body having a structure comprising a main phase and a grain boundary phase and having an Nd—Fe—B magnet composition in which Tw/(Rw×Bw) is 2.26 to 2.50, wherein Rw represents a total percent (%) by weight of rare-earth elements and elements other than Fe, Ni, Co, B, N, and C, Tw represents a total percent (%) by weight of Fe, Ni, and Co, and Bw represents a total percent (%) by weight of B, N, and C; and heat treating the sintered body in a low temperature range of 580° C. to 640° C. and a high temperature range of 660° C. or more.
    Type: Application
    Filed: March 20, 2019
    Publication date: October 10, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuaki HAGA, Daisuke ICHIGOZAKI
  • Patent number: 10199145
    Abstract: Provided is a rare-earth magnet containing no heavy rare-earth metals such as Dy or Tb in a grain boundary phase, has a modifying alloy for increasing coercivity (in particular, coercivity under a high-temperature atmosphere) infiltrated thereinto at lower temperature than in the conventional rare-earth magnets, has high coercivity, and has relatively high magnetizability, and a production method therefor. The rare-earth magnet RM includes a RE-Fe—B-based main phase MP with a nanocrystalline structure (where RE is at least one of Nd or Pr) and a grain boundary phase BP around the main phase, the grain boundary phase containing a RE-X alloy (where X is a metallic element other than heavy rare-earth elements). Crystal grains of the main phase MP are oriented along the anisotropy axis, and each crystal grain of the main phase, when viewed from a direction perpendicular to the anisotropy axis, has a plane that is quadrilateral in shape or has a close shape thereto.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: February 5, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tetsuya Shoji, Akira Manabe, Noritaka Miyamoto, Motoki Hiraoka, Shinya Omura, Daisuke Ichigozaki, Shinya Nagashima
  • Patent number: 10192679
    Abstract: A method of manufacturing a rare earth magnet includes: preparing a powder by preparing a rapidly-solidified ribbon by liquid solidification, and by crushing the rapidly-solidified ribbon; manufacturing a sintered compact by press-forming the powder; and manufacturing a rare earth magnet by performing hot deformation processing on the sintered compact to impart anisotropy to the sintered compact. In this method, the rapidly-solidified ribbon is a plurality of fine crystal grains. The powder includes a RE-Fe—B main phase and a grain boundary phase of a RE-X alloy present around the main phase. RE represents at least one of Nd and Pr. X represents a metal element. A nitrogen content in the powder is adjusted to be at least 1,000 ppm and less than 3,000 ppm by performing at least one of the preparation of the powder and the manufacturing of the sintered compact in a nitrogen atmosphere.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: January 29, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira Kano, Tetsuya Shoji, Osamu Yamashita, Daisuke Ichigozaki
  • Publication number: 20180182542
    Abstract: Provided is a method for producing a rare-earth magnet that can resolve a problem of deterioration of the residual magnetization and coercive force of the rare-earth magnet due to spring-back in producing the rare-earth magnet through performing hot deformation processing of upsetting on a sintered body. The method includes a first step of producing the sintered body through press-forming of magnetic powder for a rare-earth magnet, and a second step of producing a rare-earth magnet precursor through hot deformation processing of upsetting in which the sintered body is placed within a plastic processing mold and is pressurized in a predetermined direction so as to impart magnetic anisotropy to the sintered body, and performing cooling of the rare-earth magnet precursor while a predetermined pressure is kept being applied thereto in the predetermined direction, so that the rare-earth magnet is produced.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 28, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke ICHIGOZAKI, Takeshi YAMAMOTO
  • Patent number: 9905362
    Abstract: A method for manufacturing a rare-earth magnet, through hot deformation processing, having a high degree of orientation at the entire area thereof and high remanence, without increasing processing cost including a step of press-forming powder as a rare-earth magnetic material to form a compact S; and a step of performing hot deformation processing to the compact S, thus manufacturing the rare-earth magnet C. The hot deformation processing includes two steps of extruding and upsetting. The extruding is to place a compact S in a die Da, and apply pressure to the compact S? in a heated state with an extrusion punch PD so as to reduce the thickness for extrusion to prepare the rare-earth magnet intermediary body S? having a sheet form, and the upsetting is to apply pressure to the rare-earth magnet intermediary body S? in the thickness direction to reduce the thickness, thus manufacturing the rare-earth magnet C.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 27, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke Ichigozaki, Noritaka Miyamoto, Tetsuya Shoji, Yuya Ikeda, Akira Manabe
  • Patent number: 9859055
    Abstract: Provided is a method for manufacturing a rare-earth magnet capable of manufacturing a rare-earth magnet with high degree of orientation by sufficient plastic deformation while suppressing cracks at the side faces of a compact that is plastic-deformed during the hot deformation processing. The method includes a step of preparing a compact S, preparing a plastic processing mold including a die D in which a cavity Ca is provided, and punches P that are slidable in the cavity Ca, the cavity Ca having a cross section that is larger in cross-sectional dimensions than a cross section of the compact S that is orthogonal to a pressing direction by the punches P; and a step of placing the compact S in the cavity Ca and performing hot deformation processing, thus manufacturing an orientational magnet C.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 2, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritaka Miyamoto, Daisuke Ichigozaki, Tetsuya Shoji, Eisuke Hoshina, Akira Kano, Osamu Yamashita
  • Publication number: 20160336112
    Abstract: A method of manufacturing a rare earth magnet includes: preparing a powder by preparing a rapidly-solidified ribbon by liquid solidification, and by crushing the rapidly-solidified ribbon; manufacturing a sintered compact by press-forming the powder; and manufacturing a rare earth magnet by performing hot deformation processing on the sintered compact to impart anisotropy to the sintered compact. In this method, the rapidly-solidified ribbon is a plurality of fine crystal grains. The powder includes a RE-Fe—B main phase and a grain boundary phase of a RE-X alloy present around the main phase. RE represents at least one of Nd and Pr. X represents a metal element. A nitrogen content in the powder is adjusted to be at least 1,000 ppm and less than 3,000 ppm by performing at least one of the preparation of the powder and the manufacturing of the sintered compact in a nitrogen atmosphere.
    Type: Application
    Filed: December 19, 2014
    Publication date: November 17, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira KANO, Tetsuya SHOJI, Osamu YAMASHITA, Daisuke ICHIGOZAKI
  • Publication number: 20160097110
    Abstract: Provided is a method for manufacturing a rare-earth magnet capable of manufacturing a rare-earth magnet having excellent magnetic characteristics from magnetic powder that is prepared by liquid rapid-quenching and including both of nano-crystalline substance and amorphous substance as well. A method for manufacturing a rare-earth magnet includes: a first step of rapidly quenching of molten metal that is represented by a composition formula of (R1)x(Rh)yTzBsMt (R1 denotes one type or more of light rare-earth element containing Y, Rh denotes a heavy rare-earth element containing at least one type of Dy and Tb, T denotes transition metal containing at least one type of Fe, Ni and Co, B denotes boron, M denotes at least one type of Ga, Al and Cu, and 27?x?44, 0?y?10, z=100-x-y-s-t, 0.75?s?3.
    Type: Application
    Filed: September 21, 2015
    Publication date: April 7, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke ICHIGOZAKI, Kensuke KOMORI, Daisuke SAKUMA, Takaaki TAKAHASHI
  • Publication number: 20150287530
    Abstract: A method for manufacturing a rare-earth magnet, through hot deformation processing, having a high degree of orientation at the entire area thereof and high remanence, without increasing processing cost including a step of press-forming powder as a rare-earth magnetic material to form a compact S; and a step of performing hot deformation processing to the compact S, thus manufacturing the rare-earth magnet C. The hot deformation processing includes two steps of extruding and upsetting. The extruding is to place a compact S in a die Da, and apply pressure to the compact S? in a heated state with an extrusion punch PD so as to reduce the thickness for extrusion to prepare the rare-earth magnet intermediary body S? having a sheet form, and the upsetting is to apply pressure to the rare-earth magnet intermediary body S? in the thickness direction to reduce the thickness, thus manufacturing the rare-earth magnet C.
    Type: Application
    Filed: October 17, 2013
    Publication date: October 8, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke ICHIGOZAKI, Noritaka MIYAMOTO, Tetsuya SHOJI, Yuya IKEDA, Akira MANABE
  • Publication number: 20150279559
    Abstract: Provided is a method for manufacturing a rare-earth magnet capable of manufacturing a rare-earth magnet with high degree of orientation by sufficient plastic deformation while suppressing cracks at the side faces of a compact that is plastic-deformed during the hot deformation processing. The method includes a step of preparing a compact S, preparing a plastic processing mold including a die D in which a cavity Ca is provided, and punches P that are slidable in the cavity Ca, the cavity Ca having a cross section that is larger in cross-sectional dimensions than a cross section of the compact S that is orthogonal to a pressing direction by the punches P; and a step of placing the compact S in the cavity Ca and performing hot deformation processing, thus manufacturing an orientational magnet C.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 1, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritaka Miyamoto, Daisuke Ichigozaki, Tetsuya Shoji, Eisuke Hoshina, Akira Kano, Osamu Yamashita
  • Publication number: 20150279529
    Abstract: A method for manufacturing a rare-earth magnet having excellent workability and coercive-force performance in a high-temperature atmosphere and magnetization performance by controlling the content of Pr as the alloy composition to an optimum range, including: press-forming magnetic powder B to form a compact, the magnetic powder B including a RE-Fe-B main phase MP (RE: Nd and Pr) and an RE-X alloy (X: metal element) grain boundary phase BP around the main phase MP having an average grain size of 10 nm to 200 nm; and performing hot deformation processing to the compact to give magnetic anisotropy thereto, thus manufacturing the rare-earth magnet C that is a nano-crystalline magnet. The content of Nd, B, Co and Pr included in the magnetic powder B is Nd: 25 to 35, B: 0.5 to 1.5 and Co: 2 to 7 in terms of at %, and Pr: 0.2 to 5 at % and Fe.
    Type: Application
    Filed: October 8, 2013
    Publication date: October 1, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisuke Ichigozaki, Noritaka Miyamoto, Tetsuya Shoji, Noritsugu Sakuma, Yuya Ikeda
  • Patent number: 9111679
    Abstract: A method of producing an R-T-B rare earth magnet that include forming an R-T-B (R: rare-earth element, T: Fe, or Fe and partially Co that substitutes for part of Fe) rare earth alloy powder into a compact and performing hot working on the compact, wherein the hot working is performed in a direction that is different from the direction in which the forming was performed.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: August 18, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritaka Miyamoto, Akira Manabe, Tetsuya Shoji, Daisuke Ichigozaki
  • Patent number: 9070508
    Abstract: A method of producing an R-T-B rare earth magnet that include forming an R-T-B (R: rare-earth element, T: Fe, or Fe and partially Co that substitutes for part of Fe) rare earth alloy powder into a compact and performing hot working on the compact, wherein the hot working is performed in a direction that is different from the direction in which the forming was performed.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: June 30, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritaka Miyamoto, Akira Manabe, Tetsuya Shoji, Daisuke Ichigozaki
  • Patent number: 8911866
    Abstract: A powder for a powder magnetic core, a powder magnetic core, and methods of producing those products are provided, so that mechanical strength of a powder magnetic core can be enhanced by hydrosilylation reaction between vinylsilane and hydrosilane without degrading magnetic properties. The powder for a powder magnetic core is composed of magnetic particles 2 having a surface 21 coated with an insulating layer 3, wherein the insulating layer 3 includes a polymer resin insulating layer 33 comprising vinylsilane 4 and hydrosilane.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: December 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisuke Okamoto, Daisuke Ichigozaki, Shin Tajima, Masaaki Tani