Patents by Inventor Daisuke Kiriya

Daisuke Kiriya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9852927
    Abstract: Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8±0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.
    Type: Grant
    Filed: October 15, 2016
    Date of Patent: December 26, 2017
    Assignee: The Regents of the University of California
    Inventors: Matin Amani, Der-Hsien Lien, Daisuke Kiriya, James Bullock, Ali Javey
  • Publication number: 20170110338
    Abstract: Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8±0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.
    Type: Application
    Filed: October 15, 2016
    Publication date: April 20, 2017
    Applicant: The Regents of the University of California
    Inventors: Matin Amani, Der-Hsien Lien, Daisuke Kiriya, James Bullock, Ali Javey
  • Patent number: 9476834
    Abstract: A method for preparing a linearly extended supramolecular fiber or a plurality of linearly aligned supramolecular fibers, which comprises the step of allowing supramolecular monomers to be self-assembled in a microfluidic channel.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 25, 2016
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Shoji Takeuchi, Hiroaki Onoe, Daisuke Kiriya, Itaru Hamachi, Masato Ikeda
  • Patent number: 8785195
    Abstract: A microfiber showing improved mechanical strength, which comprises a micro gel fiber consisting of collagen gel or the like covered with high strength hydrogel such as alginate gel.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 22, 2014
    Assignee: The University of Tokyo
    Inventors: Shoji Takeuchi, Hiroaki Onoe, Yukiko Matsunaga, Daisuke Kiriya, Riho Gojo, Midori Negishi
  • Publication number: 20140069499
    Abstract: A new solar cell comprising a substrate, a VIB metal thin film deposited on the substrate, and a polycrystalline III-V semiconductor thin film deposited on the VIB metal thin film. A method of making a solar cell comprising providing a substrate, depositing a VIB metal thin film on the substrate, and depositing a polycrystalline III-V semiconductor thin film on the VIB metal thin film. In one embodiment, a polycrystalline III-V semiconductor thin film comprising Indium Phosphide (InP) is deposited on a VIB metal thin film comprising Molybdenum (Mo) by Metal Organic Chemical Vapor Deposition (MOCVD). In another embodiment, growth of Indium phosphide (InP) crystals directly on metal foils is described using a method comprising a closed-spaced sublimation (CSS). In another embodiment, both InP nanowires and polycrystalline films were obtained by tuning growth conditions. In another embodiment, utilizing a silicon dioxide mask, selective nucleation of InP on metal substrates was obtained.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 13, 2014
    Applicant: The Regents of the University of California
    Inventors: Daisuke Kiriya, Maxwell Zheng, Ali Javey
  • Publication number: 20130071948
    Abstract: A method for preparing a linearly extended supramolecular fiber or a plurality of linearly aligned supramolecular fibers, which comprises the step of allowing supramolecular monomers to be self-assembled in a microfluidic channel.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 21, 2013
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Shoji Takeuchi, Hiroaki Onoe, Daisuke Kiriya, Itaru Hamachi, Masato Ikeda
  • Publication number: 20120301963
    Abstract: A microfiber showing improved mechanical strength, which comprises a micro gel fiber consisting of collagen gel or the like covered with high strength hydrogel such as alginate gel.
    Type: Application
    Filed: October 12, 2010
    Publication date: November 29, 2012
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Shoji Takeuchi, Hiroaki Onoe, Yukiko Matsunaga, Daisuke Kiriya, Riho Gojo, Midori Negishi