Patents by Inventor Daisuke Saida

Daisuke Saida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120068281
    Abstract: According to one embodiment, a magnetic recording element includes a stacked body including a first stacked unit and a second stacked unit. The first stacked unit includes a first ferromagnetic layer, a second ferromagnetic layer and a first nonmagnetic layer. Magnetization of the first ferromagnetic layer is substantially fixed in a first direction being perpendicular to a first ferromagnetic layer surface. The second stacked unit includes a third ferromagnetic layer, a fourth ferromagnetic layer and a second nonmagnetic layer. Magnetization of the fourth ferromagnetic layer is substantially fixed in a second direction being perpendicular to a fourth ferromagnetic layer surface. The first direction is opposite to the second direction.
    Type: Application
    Filed: March 1, 2011
    Publication date: March 22, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: DAISUKE SAIDA, MINORU AMANO, JUNICHI ITO, YUICHI OHSAWA, SAORI KASHIWADA, CHIKAYOSHI KAMATA, SHIGEKI TAKAHASHI
  • Publication number: 20120061784
    Abstract: An example magnetic recording device includes a laminated body. The laminated body includes a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; a third ferromagnetic layer with a variable magnetization direction; and a fourth ferromagnetic layer with a magnetization substantially fixed in a second direction, wherein at least one of the first and second direction is generally perpendicular to the film plane. The magnetization direction of the second ferromagnetic layer is determinable in response to the orientation of a current, by passing the current in a direction generally perpendicular to the film plane of the layers of the laminated body and the magnetization of the third ferromagnetic layer is able to undergo precession by passing the current.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 15, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shiho NAKAMURA, Hirofumi MORISE, Satoshi YANAGI, Daisuke SAIDA, Akira KIKITSU
  • Patent number: 8085582
    Abstract: A magnetic recording device includes: a laminated body including: a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; and a third ferromagnetic layer with a variable magnetization direction. The magnetization direction of the second ferromagnetic layer is determinable in response to the orientation of a current, by allowing electrons spin-polarized by passing a current in a direction generally perpendicular to the film plane of the layers of the laminated body to act on the second ferromagnetic layer, and by allowing a magnetic field generated by precession of the magnetization of the third ferromagnetic layer to act on the second ferromagnetic layer.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida, Akira Kikitsu
  • Patent number: 8077509
    Abstract: A magnetic memory is provided with a memory cell. The memory cell includes a magnetic recording element, an interconnection to generate a radio-frequency current-induced magnetic field and a ground line. The magnetic recording element is provided with a first magnetic layer whose magnetization direction is substantially fixed, a magnetic recording layer whose magnetization direction is substantially reversed by spin-polarized electrons passing through the magnetic recording layer and a first nonmagnetic layer provided between the first magnetic layer and the magnetic recording layer. The interconnection is provided above the magnetic recording element to generate a radio-frequency current-induced magnetic field acting in a direction substantially perpendicular to a magnetization easy axis of the magnetic recording layer. The ground line is provided on a side opposite to the magnetic recording element with respect to the interconnection.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: December 13, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Yanagi, Yuichi Ohsawa, Shiho Nakamura, Daisuke Saida, Hirofumi Morise
  • Publication number: 20110234216
    Abstract: A spin wave element includes a substrate, a multilayer, a detecting portion, and two or more input portions. The multilayer having a lamination direction thereof is formed on the substrate and includes a first ferromagnetic layer. The first ferromagnetic layer has magnetization whose direction is in the lamination direction. The detecting portion and the input portions are formed on the multilayer and separated from each other by a first nonmagnetic layer. In addition, a portion of an outer edge of the multilayer viewed from the lamination direction makes a portion of one ellipsoid. The detecting portion and one of the input portions are located on the long axis of the one ellipsoid. The portion of the one ellipsoid is located on a side of one of the input portions.
    Type: Application
    Filed: September 13, 2010
    Publication date: September 29, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shiho Nakamura, Daisuke Saida, Hirofumi Morise, Tsuyoshi Kondo
  • Patent number: 7931976
    Abstract: A magnetic recording element includes a multilayer having a surface and a pair of electrodes. The multilayer has a first magnetic fixed layer whose magnetization is substantially fixed in a first direction substantially perpendicular to the surface. The multilayer also has a second magnetic fixed layer whose magnetization is substantially fixed in a second direction opposite to the first direction substantially perpendicular to the surface. A third magnetic layer is provided between the first and second magnetic layers. The direction of magnetization of the third ferromagnetic layer is variable. A first intermediate layer is provided between the first and the third magnetic layers. A second intermediate layer is provided between the second and the third magnetic layers. The pair of electrodes is capable of supplying an electric current flowing in a direction substantially perpendicular to the surface to the multilayer.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: April 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichi Ohsawa, Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida
  • Patent number: 7889543
    Abstract: A magnetic memory element is provided with first and second ferromagnetic fixed layers, a ferromagnetic memory layer, nonmagnetic first and second intermediate layers. The memory layer is disposed between the first and second fixed layers, and has a variable magnetization direction. In order to cancel asymmetry of a write-in current of the element, the element is provided so that the memory layer receives a larger perpendicular stray field from the first fixed layer than from the second fixed layer, and then a magnetization direction of a portion of the memory layer being nearest to the first intermediate layer and the magnetization direction of the first fixed layer are antiparallel to each other whenever a magnetization direction of a portion of the memory layer being nearest to the second intermediate layer and the magnetization direction of the second fixed layer are parallel to each other, and vice versa.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hirofumi Morise, Shiho Nakamura, Yuichi Ohsawa, Satoshi Yanagi, Daisuke Saida
  • Publication number: 20090213638
    Abstract: A magnetic memory element is provided with first and second ferromagnetic fixed layers, a ferromagnetic memory layer, nonmagnetic first and second intermediate layers. The memory layer is disposed between the first and second fixed layers, and has a variable magnetization direction. In order to cancel asymmetry of a write-in current of the element, the element is provided so that the memory layer receives a larger perpendicular stray field from the first fixed layer than from the second fixed layer, and then a magnetization direction of a portion of the memory layer being nearest to the first intermediate layer and the magnetization direction of the first fixed layer are antiparallel to each other whenever a magnetization direction of a portion of the memory layer being nearest to the second intermediate layer and the magnetization direction of the second fixed layer are parallel to each other, and vice versa.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 27, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hirofumi Morise, Shiho Nakamura, Yuichi Ohsawa, Satoshi Yanagi, Daisuke Saida
  • Publication number: 20090207724
    Abstract: A magnetic memory is provided with a memory cell. The memory cell includes a magnetic recording element, an interconnection to generate a radio-frequency current-induced magnetic field and a ground line. The magnetic recording element is provided with a first magnetic layer whose magnetization direction is substantially fixed, a magnetic recording layer whose magnetization direction is substantially reversed by spin-polarized electrons passing through the magnetic recording layer and a first nonmagnetic layer provided between the first magnetic layer and the magnetic recording layer. The interconnection is provided above the magnetic recording element to generate a radio-frequency current-induced magnetic field acting in a direction substantially perpendicular to a magnetization easy axis of the magnetic recording layer. The ground line is provided on a side opposite to the magnetic recording element with respect to the interconnection.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 20, 2009
    Inventors: Satoshi Yanagi, Yuichi Ohsawa, Shiho Nakamura, Daisuke Saida, Hirofumi Morise
  • Publication number: 20090098412
    Abstract: A magnetic recording element includes a multilayer having a surface and a pair of electrodes. The multilayer has a first magnetic fixed layer whose magnetization is substantially fixed in a first direction substantially perpendicular to the surface. The multilayer also has a second magnetic fixed layer whose magnetization is substantially fixed in a second direction opposite to the first direction substantially perpendicular to the surface. A third magnetic layer is provided between the first and second magnetic layers. The direction of magnetization of the third ferromagnetic layer is variable. A first intermediate layer is provided between the first and the third magnetic layers. A second intermediate layer is provided between the second and the third magnetic layers. The pair of electrodes is capable of supplying an electric current flowing in a direction substantially perpendicular to the surface to the multilayer.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 16, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuichi Ohsawa, Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida
  • Publication number: 20090052237
    Abstract: A magnetic memory element includes a laminated construction of a first electrode, a first pinned layer, a first intermediate layer, a memory layer, a second intermediate layer, a second pinned layer and a second electrode, and a third electrode coupled to the first intermediate layer and not directly coupled to the memory layer. The magnetization directions of the first pinned layer, the second pinned layer, and the memory layer are parallel or antiparallel to each other. The magnetization direction of the memory layer takes a first direction when the current is passed with a first polarity so that the current flowing through the first pinned layer exceeds a first threshold. The magnetization direction of the memory layer takes a second direction when the current is passed with a second polarity so that the current flowing through the first pinned layer exceeds a second threshold.
    Type: Application
    Filed: April 22, 2008
    Publication date: February 26, 2009
    Inventors: Hirofumi Morise, Shiho Nakamura, Satoshi Yanagi, Yuichi Ohsawa, Daisuke Saida
  • Publication number: 20090015958
    Abstract: A magnetic recording device includes: a laminated body including: a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; and a third ferromagnetic layer with a variable magnetization direction. The magnetization direction of the second ferromagnetic layer is determinable in response to the orientation of a current, by allowing electrons spin-polarized by passing a current in a direction generally perpendicular to the film plane of the layers of the laminated body to act on the second ferromagnetic layer, and by allowing a magnetic field generated by precession of the magnetization of the third ferromagnetic layer to act on the second ferromagnetic layer.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 15, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida, Akira Kikitsu