Patents by Inventor Daisuke SAWANOBORI

Daisuke SAWANOBORI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10288723
    Abstract: A mirror unit, a distance measurement device and a laser radar, and a mobile body and a fixed object having the mirror unit and the distance measurement device or the laser radar. The mirror unit includes a plurality of pairs of first reflecting surfaces and second reflecting surfaces inclined relative to a rotation axis, and extending in directions crossing each other. The mirror unit rotates about the rotation axis. In the mirror unit, a beam emitted from a light source is reflected on a first reflecting surface, and then reflected on a second reflecting surface paired with the first reflecting surface. The beam is scanned over an object with the rotation of the mirror unit. In the mirror unit, the first and second reflecting surfaces are formed, respectively, on first and second reflecting members which are combined to select an emission angle of a beam emitted from the mirror unit.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 14, 2019
    Assignee: KONICA MINOLTA, INC.
    Inventors: Hideyuki Fujii, Ryouta Ishikawa, Naoki Kaneko, Daisuke Sawanobori
  • Publication number: 20170184705
    Abstract: A mirror unit, a distance measurement device and a laser radar, and a mobile body and a fixed object having the mirror unit and the distance measurement device or the laser radar. The mirror unit includes a plurality of pairs of first reflecting surfaces and second reflecting surfaces inclined relative to a rotation axis, and extending in directions crossing each other. The mirror unit rotates about the rotation axis. In the mirror unit, a beam emitted from a light source is reflected on a first reflecting surface, and then reflected on a second reflecting surface paired with the first reflecting surface. The beam is scanned over an object with the rotation of the mirror unit. In the mirror unit, the first and second reflecting surfaces are formed, respectively, on first and second reflecting members which are combined to select an emission angle of a beam emitted from the mirror unit.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 29, 2017
    Applicant: KONICA MINOLTA INC.
    Inventors: Hideyuki FUJII, Ryouta ISHIKAWA, Naoki KANEKO, Daisuke SAWANOBORI