Patents by Inventor Daisuke Takesawa

Daisuke Takesawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10208365
    Abstract: A cermet tool includes from 75-95 volume % of a hard phase and from 5-25 volume % of a binder phase. The hard phase has a first hard phase with a core portion of (Ti, Nb, Mo) (C, N) and a peripheral portion of (Ti, Nb, Mo, W) (C, N) or (Ti, Nb, Mo, W, Zr) (C, N), a second hard phase with both a core portion and a peripheral portion of (Ti, Nb, Mo, W) (C, N) or (Ti, Nb, Mo, W, Zr) (C, N), and a third hard phase of (Ti, Nb, Mo) (C, N). The ratio of Nbs/Nbi is from 0.8 to 1.2, where Nbs is a maximum Nb amount in a surface region and Nbi is an internal Nb amount in an internal region. The ratio of Ws/Wi is from 1.0 to 1.5, where Ws is a maximum W amount in the surface region and Wi is an internal W amount in the internal region. The area ratios A1, A2, and A3 of the respective hard phases are from 75 to 95 area % for A1, from 4 to 24 area % for A2, and from 1 to 24 area % for A3.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: February 19, 2019
    Assignee: TUNGALOY CORPORATION
    Inventor: Daisuke Takesawa
  • Publication number: 20170088921
    Abstract: A cermet tool includes from 75-95 volume % of a hard phase and from 5-25 volume % of a binder phase. The hard phase has a first hard phase with a core portion of (Ti, Nb, Mo) (C, N) and a peripheral portion of (Ti, Nb, Mo, W) (C, N) or (Ti, Nb, Mo, W, Zr) (C, N), a second hard phase with both a core portion and a peripheral portion of (Ti, Nb, Mo, W) (C, N) or (Ti, Nb, Mo, W, Zr) (C, N), and a third hard phase of (Ti, Nb, Mo) (C, N). The ratio of Nbs/Nbi is from 0.8 to 1.2, where Nbs is a maximum Nb amount in a surface region and Nbi is an internal Nb amount in an internal region. The ratio of Ws/Wi is from 1.0 to 1.5, where Ws is a maximum W amount in the surface region and Wi is an internal W amount in the internal region. The area ratios A1, A2, and A3 of the respective hard phases are from 75 to 95 area % for A1, from 4 to 24 area % for A2, and from 1 to 24 area % for A3.
    Type: Application
    Filed: March 19, 2015
    Publication date: March 30, 2017
    Applicant: TUNGALOY CORPORATION
    Inventor: Daisuke TAKESAWA
  • Patent number: 8765272
    Abstract: A cermet has a hard phase which contains W and nitrogen, and includes at least one selected from a carbide, nitride and carbonitride of a metal having Ti as a main component, and a binder phase having an iron group metal as a main component. A W amount contained in the whole cermet is 5 to 40% by weight, an interfacial phase including a complex carbonitride with a larger W amount than a W amount of the hard phase being present between grains of the hard phase, and when a W amount contained in the interfacial phase based on the whole metal element is represented by Wb (atomic %), and a W amount contained in the hard phase based on the whole metal element is represented by Wh (atomic %), then, an atomic ratio of Wb to Wh (Wb/Wh) is 1.7 or more. The cermet is excellent in fracture resistance and wear resistance.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 1, 2014
    Assignee: Tungaloy Corporation
    Inventors: Keitaro Tamura, Daisuke Takesawa, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi, Akihiro Matsumoto, Sung-Pyo Cho
  • Publication number: 20120114960
    Abstract: A cermet has a WC first hard phase, a second hard phase including one or more of a carbide, nitride and carbonitride of an element(s) of groups 4, 5 and 6 of the Periodic Table including a titanium element, and a mutual solid solution thereof, and a binder phase. In the cermet, a carbon amount CT (% by weight), a tungsten amount CW (% by weight), and a nitrogen amount CN (% by weight) satisfy 0.25<(CN/(CT?0.0653·CW))<6. The cermet has a surface region with a thickness of 5 to 100 ?m which includes the first hard phase and the binder phase, and an inner region which includes the first and second hard phases and the binder phase. In a cross-section of the inner region, a ratio of an area of the first hard phase to an area of the second hard phase is 0.15 to 4.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 10, 2012
    Applicant: Tungaloy Corporation
    Inventors: Daisuke Takesawa, Keitaro Tamura, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi
  • Publication number: 20120003466
    Abstract: A cermet has a hard phase which contains W and nitrogen, and includes at least one selected from a carbide, nitride and carbonitride of a metal having Ti as a main component, and a binder phase having an iron group metal as a main component. A W amount contained in the whole cermet is 5 to 40% by weight, an interfacial phase including a complex carbonitride with a larger W amount than a W amount of the hard phase being present between grains of the hard phase, and when a W amount contained in the interfacial phase based on the whole metal element is represented by Wb (atomic %), and a W amount contained in the hard phase based on the whole metal element is represented by Wh (atomic %), then, an atomic ratio of Wb to Wh (Wb/Wh) is 1.7 or more. The cermet is excellent in fracture resistance and wear resistance.
    Type: Application
    Filed: March 10, 2010
    Publication date: January 5, 2012
    Applicant: TUNGALOY CORPORATION
    Inventors: Keitaro Tamura, Daisuke Takesawa, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi, Akihiro Matsumoto, Sung-Pyo Cho
  • Publication number: 20110117368
    Abstract: A hard powder contains much amount of a complex carbonitride solid solution, which can improve sinterability of a sintered hard alloy and give a uniform structure. The hard powder is a powder containing 90 vol % or more of a complex carbonitride solid solution represented by (Ti1-x,Mx)(C1-y,Ny), wherein M represents at least one element selected from the group consisting of W, Mo, Nb, Zr and Ta, x represents an atomic ratio of M based on the sum of Ti and M, y represents an atomic ratio of N based on the sum of C and N, x and y satisfy 0.05?x?0.5 and 0.01?y?0.75.
    Type: Application
    Filed: July 15, 2009
    Publication date: May 19, 2011
    Inventors: Hideaki Matsubara, Mineaki Matsumoto, Hiroshi Nomura, Yasuro Taniguchi, Kozo Kitamura, Hiroki Hara, Keitaro Tamura, Daisuke Takesawa