Patents by Inventor Daisy Stanton

Daisy Stanton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250053738
    Abstract: Aspects of this disclosure are directed to techniques that enable efficient automated text-to-speech pronunciation editing for long form text documents. A computing device comprising a memory and a processor may be configured to perform the techniques. The memory may store a text document. The processor may process words in the text document to identify first candidate words that are predicted to be mispronounced during automated text-to-speech processing of the text document. The processor may next filter the first candidate words to remove one or more candidate words of the first candidate words and obtain second candidate words that have fewer candidate words than the first candidate words. The processor may then annotate the text document to obtain an annotated text document that identifies the second candidate words, and output at least a portion of the annotated text document that identifies at least one candidate word of the second candidate words.
    Type: Application
    Filed: December 20, 2021
    Publication date: February 13, 2025
    Inventors: Ryan Dingler, John Rivlin, Christopher Salvarani, Yuanlei Zhang, Nazarii Kukhar, Russell John Wyatt Skerry-Ryan, Daisy Stanton, Judy Chang, Md Enzam Hossain
  • Publication number: 20240395238
    Abstract: A method for estimating an embedding capacity includes receiving, at a deterministic reference encoder, a reference audio signal, and determining a reference embedding corresponding to the reference audio signal, the reference embedding having a corresponding embedding dimensionality. The method also includes measuring a first reconstruction loss as a function of the corresponding embedding dimensionality of the reference embedding and obtaining a variational embedding from a variational posterior. The variational embedding has a corresponding embedding dimensionality and a specified capacity. The method also includes measuring a second reconstruction loss as a function of the corresponding embedding dimensionality of the variational embedding and estimating a capacity of the reference embedding by comparing the first measured reconstruction loss for the reference embedding relative to the second measured reconstruction loss for the variational embedding having the specified capacity.
    Type: Application
    Filed: August 7, 2024
    Publication date: November 28, 2024
    Applicant: Google LLC
    Inventors: Eric Dean Battenberg, Daisy Stanton, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Patent number: 12067969
    Abstract: A method for estimating an embedding capacity includes receiving, at a deterministic reference encoder, a reference audio signal, and determining a reference embedding corresponding to the reference audio signal, the reference embedding having a corresponding embedding dimensionality. The method also includes measuring a first reconstruction loss as a function of the corresponding embedding dimensionality of the reference embedding and obtaining a variational embedding from a variational posterior. The variational embedding has a corresponding embedding dimensionality and a specified capacity. The method also includes measuring a second reconstruction loss as a function of the corresponding embedding dimensionality of the variational embedding and estimating a capacity of the reference embedding by comparing the first measured reconstruction loss for the reference embedding relative to the second measured reconstruction loss for the variational embedding having the specified capacity.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: August 20, 2024
    Assignee: Google LLC
    Inventors: Eric Dean Battenberg, Daisy Stanton, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-Hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Publication number: 20230274728
    Abstract: A system for generating an output audio signal includes a context encoder, a text-prediction network, and a text-to-speech (TTS) model. The context encoder is configured to receive one or more context features associated with current input text and process the one or more context features to generate a context embedding associated with the current input text. The text-prediction network is configured to process the current input text and the context embedding to predict, as output, a style embedding for the current input text. The style embedding specifies a specific prosody and/or style for synthesizing the current input text into expressive speech. The TTS model is configured to process the current input text and the style embedding to generate an output audio signal of expressive speech of the current input text. The output audio signal has the specific prosody and/or style specified by the style embedding.
    Type: Application
    Filed: May 9, 2023
    Publication date: August 31, 2023
    Applicant: Google LLC
    Inventors: Daisy Stanton, Eric Dean Battenberg, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Publication number: 20230260504
    Abstract: A method for estimating an embedding capacity includes receiving, at a deterministic reference encoder, a reference audio signal, and determining a reference embedding corresponding to the reference audio signal, the reference embedding having a corresponding embedding dimensionality. The method also includes measuring a first reconstruction loss as a function of the corresponding embedding dimensionality of the reference embedding and obtaining a variational embedding from a variational posterior. The variational embedding has a corresponding embedding dimensionality and a specified capacity. The method also includes measuring a second reconstruction loss as a function of the corresponding embedding dimensionality of the variational embedding and estimating a capacity of the reference embedding by comparing the first measured reconstruction loss for the reference embedding relative to the second measured reconstruction loss for the variational embedding having the specified capacity.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 17, 2023
    Applicant: Google LLC
    Inventors: Eric Dean Battenberg, Daisy Stanton, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Patent number: 11676573
    Abstract: A system for generating an output audio signal includes a context encoder, a text-prediction network, and a text-to-speech (TTS) model. The context encoder is configured to receive one or more context features associated with current input text and process the one or more context features to generate a context embedding associated with the current input text. The text-prediction network is configured to process the current input text and the context embedding to predict, as output, a style embedding for the current input text. The style embedding specifies a specific prosody and/or style for synthesizing the current input text into expressive speech. The TTS model is configured to process the current input text and the style embedding to generate an output audio signal of expressive speech of the current input text. The output audio signal has the specific prosody and/or style specified by the style embedding.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: June 13, 2023
    Assignee: Google LLC
    Inventors: Daisy Stanton, Eric Dean Battenberg, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-Hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Patent number: 11646010
    Abstract: A method for estimating an embedding capacity includes receiving, at a deterministic reference encoder, a reference audio signal, and determining a reference embedding corresponding to the reference audio signal, the reference embedding having a corresponding embedding dimensionality. The method also includes measuring a first reconstruction loss as a function of the corresponding embedding dimensionality of the reference embedding and obtaining a variational embedding from a variational posterior. The variational embedding has a corresponding embedding dimensionality and a specified capacity. The method also includes measuring a second reconstruction loss as a function of the corresponding embedding dimensionality of the variational embedding and estimating a capacity of the reference embedding by comparing the first measured reconstruction loss for the reference embedding relative to the second measured reconstruction loss for the variational embedding having the specified capacity.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: May 9, 2023
    Assignee: Google LLC
    Inventors: Eric Dean Battenberg, Daisy Stanton, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-Hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Publication number: 20220101826
    Abstract: A method for estimating an embedding capacity includes receiving, at a deterministic reference encoder, a reference audio signal, and determining a reference embedding corresponding to the reference audio signal, the reference embedding having a corresponding embedding dimensionality. The method also includes measuring a first reconstruction loss as a function of the corresponding embedding dimensionality of the reference embedding and obtaining a variational embedding from a variational posterior. The variational embedding has a corresponding embedding dimensionality and a specified capacity. The method also includes measuring a second reconstruction loss as a function of the corresponding embedding dimensionality of the variational embedding and estimating a capacity of the reference embedding by comparing the first measured reconstruction loss for the reference embedding relative to the second measured reconstruction loss for the variational embedding having the specified capacity.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Applicant: Google LLC
    Inventors: Eric Dean Battenberg, Daisy Stanton, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-Hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Patent number: 11222621
    Abstract: A method for estimating an embedding capacity includes receiving, at a deterministic reference encoder, a reference audio signal, and determining a reference embedding corresponding to the reference audio signal, the reference embedding having a corresponding embedding dimensionality. The method also includes measuring a first reconstruction loss as a function of the corresponding embedding dimensionality of the reference embedding and obtaining a variational embedding from a variational posterior. The variational embedding has a corresponding embedding dimensionality and a specified capacity. The method also includes measuring a second reconstruction loss as a function of the corresponding embedding dimensionality of the variational embedding and estimating a capacity of the reference embedding by comparing the first measured reconstruction loss for the reference embedding relative to the second measured reconstruction loss for the variational embedding having the specified capacity.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: January 11, 2022
    Assignee: Google LLC
    Inventors: Eric Dean Battenberg, Daisy Stanton, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Publication number: 20210035551
    Abstract: A system for generating an output audio signal includes a context encoder, a text-prediction network, and a text-to-speech (TTS) model. The context encoder is configured to receive one or more context features associated with current input text and process the one or more context features to generate a context embedding associated with the current input text. The text-prediction network is configured to process the current input text and the context embedding to predict, as output, a style embedding for the current input text. The style embedding specifies a specific prosody and/or style for synthesizing the current input text into expressive speech The TTS model is configured to process the current input text and the style embedding to generate an output audio signal of expressive speech of the current input text. The output audio signal has the specific prosody and/or style specified by the style embedding.
    Type: Application
    Filed: July 16, 2020
    Publication date: February 4, 2021
    Applicant: Google LLC
    Inventors: Daisy Stanton, Eric Dean Battenberg, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-Hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Publication number: 20200372897
    Abstract: A method for estimating an embedding capacity includes receiving, at a deterministic reference encoder, a reference audio signal, and determining a reference embedding corresponding to the reference audio signal, the reference embedding having a corresponding embedding dimensionality. The method also includes measuring a first reconstruction loss as a function of the corresponding embedding dimensionality of the reference embedding and obtaining a variational embedding from a variational posterior. The variational embedding has a corresponding embedding dimensionality and a specified capacity. The method also includes measuring a second reconstruction loss as a function of the corresponding embedding dimensionality of the variational embedding and estimating a capacity of the reference embedding by comparing the first measured reconstruction loss for the reference embedding relative to the second measured reconstruction loss for the variational embedding having the specified capacity.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 26, 2020
    Applicant: Google LLC
    Inventors: Eric Dean Battenberg, Daisy Stanton, Russell John Wyatt Skerry-Ryan, Soroosh Mariooryad, David Teh-hwa Kao, Thomas Edward Bagby, Sean Matthew Shannon
  • Patent number: 9116886
    Abstract: A computer-implemented method includes receiving, at a translation server in communication with a network, a request for a translation of text in a source language to a target language. At least a portion of the text is translated at the translation server from the source language to the target language to obtain a translated version of the text in the target language. Translating the text includes determining one or more terms from the text corresponding to a pre-defined term translator, applying the pre-defined term translator to the one or more terms, and translating a set of additional terms from the text from the source language to the target language via a translation model. The method additionally includes providing, via the translation server, the translated version of the text to a web server.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 25, 2015
    Assignee: Google Inc.
    Inventors: Jeffrey Jar-hou Chin, Daisy Stanton, Vijay Sainath Thadkal, Jun Yin
  • Publication number: 20150161113
    Abstract: A computer-implemented method includes receiving, at a translation server in communication with a network, a request for a translation of text in a source language to a target language. At least a portion of the text is translated at the translation server from the source language to the target language to obtain a translated version of the text in the target language. Translating the text includes determining one or more terms from the text corresponding to a pre-defined term translator, applying the pre-defined term translator to the one or more terms, and translating a set of additional terms from the text from the source language to the target language via a translation model. The method additionally includes providing, via the translation server, the translated version of the text to a web server.
    Type: Application
    Filed: July 23, 2012
    Publication date: June 11, 2015
    Applicant: GOOGLE INC.
    Inventors: Jeffrey Jar-hou Chin, Daisy Stanton, Vijay Sainath Thadkal, Jun Yin
  • Patent number: 7617197
    Abstract: A system for searching an object environment includes harvesting and indexing applications to create a search database and one or more indexes into the database. A scoring application determines the relevance of the objects, and a querying application locates objects in the database according to a search term. One or more of the indexes may be implemented by a hash table or other suitable data structure, where algorithms provide for adding objects to the indexes and searching for objects in the indexes. A ranking scheme sorts searchable items according to an estimate of the frequency that the items will be used in the future. Multiple indexes enable a combined prefix title and full-text content search of the database, accessible from a single search interface.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 10, 2009
    Assignee: Google Inc.
    Inventors: Daisy Stanton, Susannah Raub, Adam Dingle
  • Patent number: 7529739
    Abstract: A system for searching an object environment includes harvesting and indexing applications to create a search database and one or more indexes into the database. A scoring application determines the relevance of the objects, and a querying application locates objects in the database according to a search term. One or more of the indexes may be implemented by a hash table or other suitable data structure, where algorithms provide for adding objects to the indexes and searching for objects in the indexes. A ranking scheme sorts searchable items according to an estimate of the frequency that the items will be used in the future. Multiple indexes enable a combined prefix title and full-text content search of the database, accessible from a single search interface.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: May 5, 2009
    Assignee: Google Inc.
    Inventors: Susannah Raub, Adam Dingle, Daisy Stanton
  • Publication number: 20070043714
    Abstract: A system for searching an object environment includes harvesting and indexing applications to create a search database and one or more indexes into the database. A scoring application determines the relevance of the objects, and a querying application locates objects in the database according to a search term. One or more of the indexes may be implemented by a hash table or other suitable data structure, where algorithms provide for adding objects to the indexes and searching for objects in the indexes. A ranking scheme sorts searchable items according to an estimate of the frequency that the items will be used in the future. Multiple indexes enable a combined prefix title and full-text content search of the database, accessible from a single search interface.
    Type: Application
    Filed: August 19, 2005
    Publication date: February 22, 2007
    Inventors: Daisy Stanton, Susannah Raub, Adam Dingle
  • Publication number: 20070043704
    Abstract: A system for searching an object environment includes harvesting and indexing applications to create a search database and one or more indexes into the database. A scoring application determines the relevance of the objects, and a querying application locates objects in the database according to a search term. One or more of the indexes may be implemented by a hash table or other suitable data structure, where algorithms provide for adding objects to the indexes and searching for objects in the indexes. A ranking scheme sorts searchable items according to an estimate of the frequency that the items will be used in the future. Multiple indexes enable a combined prefix title and full-text content search of the database, accessible from a single search interface.
    Type: Application
    Filed: August 19, 2005
    Publication date: February 22, 2007
    Inventors: Susannah Raub, Adam Dingle, Daisy Stanton