Patents by Inventor Dakai Jin

Dakai Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240005507
    Abstract: An image processing method is provided.
    Type: Application
    Filed: October 13, 2022
    Publication date: January 4, 2024
    Inventors: Jiawen YAO, Yingda XIA, Ke YAN, Dakai JIN, Xiansheng HUA, Le LU, Ling ZHANG
  • Publication number: 20240005509
    Abstract: A method, an apparatus, and a non-transitory computer readable medium for training an image processing model are provided. The method includes: acquiring a sample image comprising a target object to determine an object segmentation image of the target object in the sample image; constructing an object coordinate map corresponding to the object segmentation image according to the object segmentation image; and training an image processing model comprising a self-attention mechanism layer according to the sample image, the object segmentation image, and the object coordinate map.
    Type: Application
    Filed: October 13, 2022
    Publication date: January 4, 2024
    Inventors: Yingda XIA, Jiawen YAO, Dakai JIN, Xiansheng HUA, Le LU, Ling ZHANG
  • Patent number: 11701066
    Abstract: A method for performing a computer-aided diagnosis (CAD) includes: acquiring a medical image set; generating a three-dimensional (3D) tumor distance map corresponding to the medical image set, each voxel of the tumor distance map representing a distance from the voxel to a nearest boundary of a primary tumor present in the medical image set; and performing neural-network processing of the medical image set to generate a predicted probability map to predict presence and locations of oncology significant lymph nodes (OSLNs) in the medical image set, wherein voxels in the medical image set are stratified and processed according to the tumor distance map.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 18, 2023
    Assignee: PING AN TECHNOLOGY (SHENZHEN) CO., LTD.
    Inventors: Ke P Yan, Zhuotun Zhu, Dakai Jin, Jinzheng Cai, Adam P Harrison, Dazhou Guo, Le Lu
  • Patent number: 11620359
    Abstract: The present disclosure provides a method, a device, and a computer program product using a self-supervised anatomical embedding (SAM) method.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: April 4, 2023
    Assignee: PING AN TECHNOLOGY (SHENZHEN) CO., LTD.
    Inventors: Ke Yan, Jinzheng Cai, Youbao Tang, Dakai Jin, Shun Miao, Le Lu
  • Patent number: 11403493
    Abstract: A method for performing a computer-aided diagnosis (CAD) for universal lesion detection includes: receiving a medical image; processing the medical image to predict lesion proposals and generating cropped feature maps corresponding to the lesion proposals; for each lesion proposal, applying a plurality of lesion detection classifiers to generate a plurality of lesion detection scores, the plurality of lesion detection classifiers including a whole-body classifier and one or more organ-specific classifiers; for each lesion proposal, applying an organ-gating classifier to generate a plurality of weighting coefficients corresponding to the plurality of lesion detection classifiers; and for each lesion proposal, performing weight gating on the plurality of lesion detection scores with the plurality of weighting coefficients to generate a comprehensive lesion detection score.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: August 2, 2022
    Assignee: PING AN TECHNOLOGY (SHENZHEN) CO., LTD.
    Inventors: Ke Yan, Jinzheng Cai, Adam P Harrison, Dakai Jin, Le Lu
  • Publication number: 20220180126
    Abstract: The present disclosure provides a method, a device, and a computer program product using a self-supervised anatomical embedding (SAM) method.
    Type: Application
    Filed: March 22, 2021
    Publication date: June 9, 2022
    Inventors: Ke YAN, Jinzheng CAI, Youbao TANG, Dakai JIN, Shun MIAO, Le LU
  • Patent number: 11315254
    Abstract: A method and device for stratified image segmentation are provided. The method includes: obtaining a three-dimensional (3D) image data set representative of a region comprising at least three levels of objects; generating a first segmentation result indicating boundaries of anchor-level objects in the region based on a first neural network (NN) model corresponding to the anchor-level objects; generating a second segmentation result indicating boundaries of mid-level objects in the region based on the first segmentation result and a second NN model corresponding to the mid-level objects; and generating a third segmentation result indicating small-level objects in the region based on the first segmentation result, a third NN model corresponding to the small-level objects, and cropped regions corresponding to the small-level objects.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: April 26, 2022
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Dazhou Guo, Dakai Jin, Zhuotun Zhu, Adam P Harrison, Le Lu
  • Publication number: 20210233240
    Abstract: A method for performing a computer-aided diagnosis (CAD) includes: acquiring a medical image set; generating a three-dimensional (3D) tumor distance map corresponding to the medical image set, each voxel of the tumor distance map representing a distance from the voxel to a nearest boundary of a primary tumor present in the medical image set; and performing neural-network processing of the medical image set to generate a predicted probability map to predict presence and locations of oncology significant lymph nodes (OSLNs) in the medical image set, wherein voxels in the medical image set are stratified and processed according to the tumor distance map.
    Type: Application
    Filed: November 11, 2020
    Publication date: July 29, 2021
    Inventors: Ke P. YAN, Zhuotun ZHU, Dakai JIN, Jinzheng CAI, Adam P. HARRISON, Dazhou GUO, Le LU
  • Publication number: 20210224603
    Abstract: A method for performing a computer-aided diagnosis (CAD) for universal lesion detection includes: receiving a medical image; processing the medical image to predict lesion proposals and generating cropped feature maps corresponding to the lesion proposals; for each lesion proposal, applying a plurality of lesion detection classifiers to generate a plurality of lesion detection scores, the plurality of lesion detection classifiers including a whole-body classifier and one or more organ-specific classifiers; for each lesion proposal, applying an organ-gating classifier to generate a plurality of weighting coefficients corresponding to the plurality of lesion detection classifiers; and for each lesion proposal, performing weight gating on the plurality of lesion detection scores with the plurality of weighting coefficients to generate a comprehensive lesion detection score.
    Type: Application
    Filed: August 3, 2020
    Publication date: July 22, 2021
    Inventors: Ke Yan, Jinzheng Cai, Adam P. Harrison, Dakai Jin, Le Lu
  • Publication number: 20210225000
    Abstract: A method and device for stratified image segmentation are provided. The method includes: obtaining a three-dimensional (3D) image data set representative of a region comprising at least three levels of objects; generating a first segmentation result indicating boundaries of anchor-level objects in the region based on a first neural network (NN) model corresponding to the anchor-level objects; generating a second segmentation result indicating boundaries of mid-level objects in the region based on the first segmentation result and a second NN model corresponding to the mid-level objects; and generating a third segmentation result indicating small-level objects in the region based on the first segmentation result, a third NN model corresponding to the small-level objects, and cropped regions corresponding to the small-level objects.
    Type: Application
    Filed: July 14, 2020
    Publication date: July 22, 2021
    Inventors: Dazhou GUO, Dakai JIN, Zhuotun ZHU, Adam P Harrison, Le LU
  • Patent number: 11040219
    Abstract: The present disclosure provides a clinical target volume delineation method and an electronic device. The method includes: receiving a radiotherapy computed tomography (RTCT) image; and obtaining a plurality of binary images by delineating a gross tumor volume (GTV), lymph nodes (LNs), and organs at risk (OARs) in the RTCT image. A SDMs for each of the binary images is calculated. The RTCT image and all the SDM are finally input into a clinical target volume (CTV) delineation model; and a CTV in the RTCT image is delineated by the CTV delineation model. An automatic delineation of the CTV of esophageal cancer are realized, a delineation efficiency is high and a delineation effect is good.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: June 22, 2021
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Patent number: 10984530
    Abstract: An enhanced medical images processing method and a computing device includes: acquiring series of enhanced medical images and detecting a phase of each enhanced medical image in the series of enhanced medical images using a pre-trained 3D convolutional neural network model. A plurality of target enhanced medical images from the enhanced medical image are selected according to the phases. A plurality of interest images is obtained by identifying and segmenting an interest region in each of the plurality of target enhanced medical images, and finally registering the plurality of interest images. The registered images have clear phase markers and are all spatially aligned, allowing a subsequent doctor or clinician to directly use the registered interest images for diagnosis without the need to rescan the patient.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: April 20, 2021
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Jiawen Yao, Dakai Jin, Le Lu
  • Patent number: 10937143
    Abstract: A fracture detection method executed by an electronic device is provided. The fracture detection method includes obtaining a to-be-detected image; using a Fully Convolutional Networks (FCN) model to process the to-be-detected image to obtain a fracture probability map of the to-be-detected image; performing a maximum pooling process on the fracture probability map to obtain a first fracture probability; extracting Regions of Interests (ROIs) of the to-be-detected image based on the FCN model; inputting the ROIs into a classification model to obtain a second fracture probability; calculating a product of the first fracture probability and the second fracture probability as a probability of a fracture phenomenon in the to-be-detected image. The present disclosure combines the FCN model and the ROIs to realize an automatic fracture detection, and the accuracy is higher. A device employing the method is also disclosed.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: March 2, 2021
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Yirui Wang, Le Lu, Dakai Jin, Adam Patrick Harrison, Shun Miao
  • Publication number: 20210056706
    Abstract: In a GTV segmentation method, a PET-CT image pair and an RTCT image of a human body are obtained. A PET image in the PET-CT image pair is aligned to the RTCT image to obtain an aligned PET image. A first PSNN performs a first GTV segmentation on the RTCT image to obtain a first segmentation image. The RTCT image and the aligned PET image are concatenated into a first concatenated image. A second PSNN performs a second GTV segmentation on the first concatenated image to obtain a second segmentation image. The RTCT image, the first segmentation image, and the second segmentation image are concatenated into a second concatenated image. A third PSNN performs a third GTV segmentation on the second concatenated image to obtain an object segmentation image.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Publication number: 20210052918
    Abstract: The present disclosure provides a clinical target volume delineation method and an electronic device. The method includes: receiving a radiotherapy computed tomography (RTCT) image; and obtaining a plurality of binary images by delineating a gross tumor volume (GTV), lymph nodes (LNs), and organs at risk (OARs) in the RTCT image. A SDMs for each of the binary images is calculated. The RTCT image and all the SDM are finally input into a clinical target volume (CTV) delineation model; and a CTV in the RTCT image is delineated by the CTV delineation model. An automatic delineation of the CTV of esophageal cancer are realized, a delineation efficiency is high and a delineation effect is good.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison
  • Publication number: 20210056672
    Abstract: A fracture detection method executed by an electronic device is provided. The fracture detection method includes obtaining a to-be-detected image; using a Fully Convolutional Networks (FCN) model to process the to-be-detected image to obtain a fracture probability map of the to-be-detected image; performing a maximum pooling process on the fracture probability map to obtain a first fracture probability; extracting Regions of Interests (ROIs) of the to-be-detected image based on the FCN model; inputting the ROIs into a classification model to obtain a second fracture probability; calculating a product of the first fracture probability and the second fracture probability as a probability of a fracture phenomenon in the to-be-detected image. The present disclosure combines the FCN model and the ROIs to realize an automatic fracture detection, and the accuracy is higher. A device employing the method is also disclosed.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Yirui Wang, Le Lu, Dakai Jin, Adam Patrick Harrison, Shun Miao
  • Patent number: 10929981
    Abstract: In a GTV segmentation method, a PET-CT image pair and an RTCT image of a human body are obtained. A PET image in the PET-CT image pair is aligned to the RTCT image to obtain an aligned PET image. A first PSNN performs a first GTV segmentation on the RTCT image to obtain a first segmentation image. The RTCT image and the aligned PET image are concatenated into a first concatenated image. A second PSNN performs a second GTV segmentation on the first concatenated image to obtain a second segmentation image. The RTCT image, the first segmentation image, and the second segmentation image are concatenated into a second concatenated image. A third PSNN performs a third GTV segmentation on the second concatenated image to obtain an object segmentation image.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 23, 2021
    Assignee: Ping An Technology (Shenzhen) Co., Ltd.
    Inventors: Dakai Jin, Dazhou Guo, Le Lu, Adam Patrick Harrison