Patents by Inventor Dale C. Jacobson

Dale C. Jacobson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140061816
    Abstract: A method of manufacturing a semiconductor device includes the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant molecules contain n dopant atoms, where n is an integer number greater than 10. This method enables increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy, while reducing the charge per dopant atom by the factor n.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 8618514
    Abstract: A method of manufacturing a semiconductor device includes the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant molecules contain n dopant atoms, where n is an integer number greater than 10. This method enables increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy, while reducing the charge per dopant atom by the factor n.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 31, 2013
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 8436326
    Abstract: A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 7, 2013
    Assignee: Semequip, Inc.
    Inventors: Hilton F. Glavish, Thomas N. Horsky, Dale C. Jacobson, Sami K. Hahto, Masao Naito, Nobuo Nagai, Nariaki Hamamoto
  • Patent number: 8410459
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. For example, in the fabrication of Complementary Metal-Oxide Semiconductor (CMOS) devices, the clusters are implanted to provide P-type doping for Source and Drain structures and for Polygates; these doping steps are critical to the formation of PMOS transistors. The molecular cluster ions have the chemical form BnHx+ and BnHx?, where 10?n?100 and 0?x?n+4.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 2, 2013
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 8236675
    Abstract: A method is proposed for the fabrication of the gate electrode of a semiconductor device such that the effects of gate depletion are minimized. The method is comprised of a dual deposition process wherein the first step is a very thin layer that is doped very heavily by ion implantation. The second deposition, with an associated ion implant for doping, completes the gate electrode. With the two-deposition process, it is possible to maximize the doping at the gate electrode/gate dielectric interface while minimizing risk of boron penetration of the gate dielectric. A further development of this method includes the patterning of both gate electrode layers with the advantage of utilizing the drain extension and source/drain implants as the gate doping implants and the option of offsetting the two patterns to create an asymmetric device.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 7, 2012
    Assignee: SemEquip, Inc.
    Inventors: Wade A. Krull, Dale C. Jacobson
  • Publication number: 20120076475
    Abstract: A method of manufacturing a semiconductor device includes the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant molecules contain n dopant atoms, where n is an integer number greater than 10. This method enables increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy, while reducing the charge per dopant atom by the factor n.
    Type: Application
    Filed: November 2, 2011
    Publication date: March 29, 2012
    Applicant: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 8110820
    Abstract: A multipurpose ion implanter beam line configuration constructed for enabling implantation of common monatomic dopant ion species and cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept art ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection width and the analyzer magnet having a resolution at the mass selection aperture sufficient to enable selection of a beam of monatomic dopant ions o
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: February 7, 2012
    Assignee: SemEquip, Inc.
    Inventors: Hilton F. Glavish, Dale C. Jacobson, Sami K. Hahto, Thomas N. Horsky
  • Patent number: 8071958
    Abstract: A method of manufacturing a semiconductor device includes the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant molecules contain n dopant atoms, where n is an integer number greater than 10. This method enables increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy, while reducing the charge per dopant atom by the factor n.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: December 6, 2011
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Publication number: 20110226969
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. For example, in the fabrication of Complementary Metal-Oxide Semiconductor (CMOS) devices, the clusters are implanted to provide P-type doping for Source and Drain structures and for Polygates; these doping steps are critical to the formation of PMOS transistors. The molecular cluster ions have the chemical form BnHx+ and BnHx?, where 10?n?100 and 0?x?n+4.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 22, 2011
    Applicant: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 7960709
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. For example, in the fabrication of Complementary Metal-Oxide Semiconductor (CMOS) devices, the clusters are implanted to provide P-type doping for Source and Drain structures and for Polygates; these doping steps are critical to the formation of PMOS transistors. The molecular cluster ions have the chemical form BnHx+ and BnHx? where 10<n<100 and 0<x<n+4.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: June 14, 2011
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Publication number: 20110089321
    Abstract: A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection
    Type: Application
    Filed: November 17, 2010
    Publication date: April 21, 2011
    Applicant: Semequip, Inc.
    Inventors: Hilton F. Glavish, Thomas N. Horsky, Dale C. Jacobson, Sami K. Hahto, Masao Naito, Nobuo Nagai, Nariaki Hamamoto
  • Patent number: 7919402
    Abstract: A method of semiconductor manufacturing is disclosed in which doping is accomplished by the implantation of ion beams formed from ionized molecules, and more particularly to a method in which molecular and cluster dopant ions are implanted into a substrate with and without a co-implant of non-dopant cluster ion, such as a carbon cluster ion, wherein the dopant ion is implanted into the amorphous layer created by the co-implant in order to reduce defects in the crystalline structure, thus reducing the leakage current and improving performance of the semiconductor junctions. These compounds include co-implants of carbon clusters with implants of monomer or cluster dopants or simply implanting cluster dopants. In particular, the invention described herein consists of a method of implanting semiconductor wafers implanting semiconductor wafers with carbon clusters followed by implants of boron, phosphorus, or arsenic, or followed with implants of dopant clusters of boron, phosphorus, or arsenic.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: April 5, 2011
    Assignee: SemEquip, Inc.
    Inventors: Dale C. Jacobson, Thomas N. Horsky, Wade A. Krull, Karuppanan Sekar
  • Patent number: 7851773
    Abstract: A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: December 14, 2010
    Assignee: Semiquip, Inc.
    Inventors: Hilton F. Glavish, Thomas N. Horsky, Dale C. Jacobson, Sami K. Hahto, Masao Naito, Nobuo Nagai, Nariaki Hamamoto
  • Patent number: 7820981
    Abstract: The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases (F or Cl), and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: October 26, 2010
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III, George P. Sacco, Jr., Dale C. Jacobson, Wade A. Krull
  • Patent number: 7723233
    Abstract: A method is proposed for the fabrication of the gate electrode of a semiconductor device such that the effects of gate depletion are minimized. The method is comprised of a dual deposition process wherein the first step is a very thin layer that is doped very heavily by ion implantation. The second deposition, with an associated ion implant for doping, completes the gate electrode. With the two-deposition process, it is possible to maximize the doping at the gate electrode/gate dielectric interface while minimizing risk of boron penetration of the gate dielectric. A further development of this method includes the patterning of both gate electrode layers with the advantage of utilizing the drain extension and source/drain implants as the gate doping implants and the option of offsetting the two patterns to create an asymmetric device.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: May 25, 2010
    Assignee: Semequip, Inc.
    Inventors: Wade A Krull, Dale C. Jacobson
  • Publication number: 20100022077
    Abstract: A method is proposed for the fabrication of the gate electrode of a semiconductor device such that the effects of gate depletion are minimized. The method is comprised of a dual deposition process wherein the first step is a very thin layer that is doped very heavily by ion implantation. The second deposition, with an associated ion implant for doping, completes the gate electrode. With the two-deposition process, it is possible to maximize the doping at the gate electrode/gate dielectric interface while minimizing risk of boron penetration of the gate dielectric. A further development of this method includes the patterning of both gate electrode layers with the advantage of utilizing the drain extension and source/drain implants as the gate doping implants and the option of offsetting the two patterns to create an asymmetric device.
    Type: Application
    Filed: October 2, 2009
    Publication date: January 28, 2010
    Inventors: Wade A. Krull, Dale C. Jacobson
  • Patent number: 7629590
    Abstract: The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases, and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: December 8, 2009
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III, George P. Sacco, Jr., Dale C. Jacobson, Wade A. Krull
  • Publication number: 20090261248
    Abstract: A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection
    Type: Application
    Filed: June 13, 2007
    Publication date: October 22, 2009
    Inventors: Hilton F. Glavish, Thomas N. Horsky, Dale C. Jacobson, Sami K. Hahto, Masao Naito, Nobuo Nagai, Nariaki Hamamoto
  • Publication number: 20090206270
    Abstract: A multipurpose ion implanter beam line configuration constructed for enabling implantation of common monatomic dopant ion species and cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept art ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection width and the analyzer magnet having a resolution at the mass selection aperture sufficient to enable selection of a beam of monatomic dopant ions o
    Type: Application
    Filed: June 13, 2007
    Publication date: August 20, 2009
    Applicant: SEMEQUIP, INC.
    Inventors: Hilton F. Glayish, Dale C. Jacobson, Sami K. Hahto, Thomas N. Horsky
  • Publication number: 20090090872
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. For example, in the fabrication of Complementary Metal-Oxide Semiconductor (CMOS) devices, the clusters are implanted to provide P-type doping for Source and Drain structures and for Poly gates; these doping steps are critical to the formation of PMOS transistors. The molecular cluster ions have the chemical form BnHx+ and BnHx?, where 10<n<100 and 0?x?n+4. The use of such boron hydride clusters results in a dramatic increase in wafer throughput, as well as improved device yields through the reduction of wafer charging. Thus, this technology significantly reduces manufacturing costs relative to prior implantation techniques.
    Type: Application
    Filed: November 11, 2008
    Publication date: April 9, 2009
    Inventors: Thomas N. Horsky, Dale C. Jacobson