Patents by Inventor Dale M. Taylor

Dale M. Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912476
    Abstract: A child-resistant closure having inner and outer caps cooperating as a nested shell is contemplated. Downward force applied to the closure engages a series of cooperating lugs and detents to engage the child resistant feature, while thinned walls and cooperating, ramped skirts on the shells' interfacing surfaces to improve the hoop strength along a predefined circumference to avoid stripping/disengagement of the threads on the closure and container neck. An optional tamper evident ring may also be provided, as well as a combustion resistant vent formed in the top panel of the inner shell.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 27, 2024
    Assignee: RIEKE LLC
    Inventors: Anthony M. Angelozzi, Gary M. Baughman, Dale W. Taylor, Thomas P. Kasting
  • Patent number: 7955423
    Abstract: Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: June 7, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Howard Gordon, Dale M. Taylor
  • Patent number: 7595019
    Abstract: Method of making an electrochemical device for the recovery of oxygen from an oxygen-containing feed gas comprising (a) preparing a green electrochemical device by assembling a green electrolyte layer, a green anode layer in contact with the green electrolyte layer, a green cathode layer in contact with the green electrolyte layer, a green anode-side gas collection interconnect layer in contact with the green anode layer, and a green cathode-side feed gas distribution interconnect layer in contact with the green cathode layer; and (b) sintering-the green electrochemical device by heating to yield a sintered electrochemical device comprising a plurality of sintered layers including a sintered anode-side gas collection interconnect layer in contact with the anode layer and adapted to collect oxygen permeate gas, wherein each sintered layer is bonded to an adjacent sintered layer during sintering.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: September 29, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Raymond Ashton Cutler, Kent Neal Hutchings, Merrill Anderson Wilson, Ronald Almy Hollis, Dale M. Taylor
  • Patent number: 7122072
    Abstract: Method for processing an article comprising a mixed conducting metal oxide material, which method comprises (a) contacting the article with an oxygen-containing gas and reducing or increasing the temperature of the oxygen-containing gas; (b) when the temperature of the oxygen-containing gas is reduced, reducing the oxygen activity in the oxygen-containing gas; and (c) when the temperature of the oxygen-containing gas is increased, increasing the oxygen activity in the oxygen-containing gas.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: October 17, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Matthew James Watson, Eric Minford, Stephen Andrew Motika, Dale M. Taylor
  • Patent number: 6302402
    Abstract: A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: October 16, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Steven Walton Rynders, Eric Minford, Richard Ernest Tressler, Dale M. Taylor
  • Patent number: 6117288
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: September 12, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 6042703
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: March 28, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 5868918
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: February 9, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Brett Tamatea Henderson, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 5753007
    Abstract: Oxygen is recovered from a hot, compressed oxygen-containing gas, preferably air, by an oxygen-selective ion transport membrane system. Hot, pressurized non-permeate gas from the membrane is cooled and useful work is recovered therefrom by expansion at temperatures below the operating temperature of the membrane. The recovered work is used together with the oxygen permeate product in applications such as oxygen-enriched combustion of liquid fuels, wood pulping processes, steel production from scrap in mini-mills, and metal fabrication operations. Oxygen permeate product can be compressed utilizing a gas booster compressor driven by expansion of cooled, pressurized non-permeate gas.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: May 19, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Steven Lee Russek, Jeffrey Alan Knopf, Dale M. Taylor
  • Patent number: 5750279
    Abstract: An electrochemical device is disclosed comprising a plurality of planar electrolytic cells connected in series, each cell having an oxygen ion-conducting electrolyte layer, an anode layer and a cathode layer associated with the electrolyte layer, electrically conductive interconnect layers having gas passages situated therein for transporting gaseous streams, which interconnect layers electrically connect the anode layer of each electrolytic cell to the cathode layer of an adjacent planar cell, and sealing means positioned between the interconnect layers and the electrolytic cells to provide a gas-tight seal therebetween. The configuration of the interconnect layer and the placement of the seal means provides a separation between the seal and the conductive pathway of electrons between the anode layer and cathode layer which prevents corrosion or deterioration of the seal.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: May 12, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Paul Nigel Dyer, Eric Minford, Steven Lee Russek, Merrill Anderson Wilson, Dale M. Taylor, Brett Tamatea Henderson
  • Patent number: 5681373
    Abstract: Planar solid-state membrane modules for separating oxygen from an oxygen-containing gaseous mixture which provide improved pneumatic and structural integrity and ease of manifolding. The modules are formed from a plurality of planar membrane units, each membrane unit which comprises a channel-free porous support having connected through porosity which is in contact with a contiguous dense mixed conducting oxide layer having no connected through porosity. The dense mixed conducting oxide layer is placed in flow communication with the oxygen-containing gaseous mixture to be separated and the channel-free porous support of each membrane unit is placed in flow communication with one or more manifolds or conduits for discharging oxygen which has been separated from the oxygen-containing gaseous mixture by permeation through the dense mixed conducting oxide layer of each membrane unit and passage into the manifolds or conduits via the channel-free porous support of each membrane unit.
    Type: Grant
    Filed: March 13, 1995
    Date of Patent: October 28, 1997
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Dale M. Taylor, Jeffrey Donald Bright, Michael Francis Carolan, Raymond Ashton Cutler, Paul Nigel Dyer, Eric Minford, David W. Prouse, Robin Edward Richards, Steven L. Russek, Merrill Anderson Wilson
  • Patent number: 5624542
    Abstract: Enhancement of mechanical properties of ceramic membranes by introduction of a uniformly distributed high-temperature oxidation-resistant metal phase into the brittle ceramic phase to achieve mechanically strong ceramic/metal composites operable in an oxidation atmosphere and at elevated temperatures.
    Type: Grant
    Filed: June 12, 1995
    Date of Patent: April 29, 1997
    Assignee: Gas Research Institute
    Inventors: Yousheng Shen, Ashok V. Joshi, Dale M. Taylor, Michael J. Boettcher, Kevin Krist, Anil V. Virkar
  • Patent number: 5599383
    Abstract: Tubular solid-state membrane modules for separating oxygen from an oxygen-containing gaseous mixture which provide improved pneumatic and structural integrity and ease of manifolding. The modules are formed from a plurality of tubular membrane units, each membrane unit which comprises a channel-free porous support having connected through porosity which is in contact with a contiguous dense mixed conducting oxide layer having no connected through porosity. The dense mixed conducting oxide layer is placed in flow communication with the oxygen-containing gaseous mixture to be separated and the channel-free porous support of each membrane unit is placed in flow communication with one or more manifolds or conduits for discharging oxygen which has been separated from the oxygen-containing gaseous mixture by permeation through the dense mixed conducting oxide layer of each membrane unit and passage into the manifolds or conduits via the channel-free porous support of each membrane unit.
    Type: Grant
    Filed: March 13, 1995
    Date of Patent: February 4, 1997
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Paul N. Dyer, Jeffrey D. Bright, Michael F. Carolan, Eric Minford, Robin E. Richards, Steven L. Russek, Dale M. Taylor, Merrill A. Wilson
  • Patent number: 5454923
    Abstract: A process and system for removing trace amounts of oxygen as an impurity in inert gases is disclosed. The process and system involve an electrochemical cell containing an oxygen ion transporting, solid state metal oxide electrolyte having a high thermodynamic potential and having only one thermodynamically stable valence state for the metal ion component of the electrolyte. The electrolyte is coated with a perovskite anode and a metallic cathode. Operation is conducted at high voltages, e.g., 1.5 volts and above, at elevated temperatures. Purification of inert gases to an oxygen content of about 1 ppm is readily achievable.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: October 3, 1995
    Assignee: Ceramatec, Inc.
    Inventors: Jesse A. Nachlas, Dale M. Taylor
  • Patent number: 5378345
    Abstract: The invention is a ceramic solid electrolyte based electrochemical oxygen concentrator cell and the method for fabricating said cell. The cell is based on a doped cerium oxide ceramic solid electrolyte and lanthanum strontium cobaltite ceramic electrodes.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: January 3, 1995
    Assignee: Ceramatec, Inc.
    Inventors: Dale M. Taylor, Ashok V. Joshi
  • Patent number: 5338623
    Abstract: An electrochemical device is disclosed comprising a plurality of electrolytic cells, each having an oxygen ion-conducting electrolyte, an anode and a cathode associated with the electrolyte, conductive interconnecting structures electrically connecting the anode of each electrolytic cell to the cathode of an adjacent tubular cell, and sealing means positioned between the interconnecting structure and the electrolytic cells to provide a gas-tight seal therebetween. The configuration of the interconnecting structure and the placement of the seal means provides a separation between the seal and the conductive pathway of electrons between the anode and cathode to prevent corrosion or deterioration of the seal thereby compromising the pneumatic integrity of the device.
    Type: Grant
    Filed: February 28, 1992
    Date of Patent: August 16, 1994
    Assignee: Ceramatec, Inc.
    Inventors: Jesse A. Nachlas, Dale M. Taylor, Merrill A. Wilson
  • Patent number: D333005
    Type: Grant
    Filed: October 30, 1990
    Date of Patent: February 2, 1993
    Assignee: Ceramatec, Inc.
    Inventor: Dale M. Taylor