Patents by Inventor Dale Mayes

Dale Mayes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170187249
    Abstract: The disclosed system utilizes multiple wireless power receivers (antennas and or paths) for receiving power. The disclosed system includes a chip, such as an application specific chip (ASICs) connectable to multiple antennas and units to convert radio frequency (RF) power into direct current (DC) power. The disclosed system can also include antennas that are used to receiving power, communicate, and send a beacon signal. The disclosed system also comprises a mobile electronic device to receive wireless power using multiple antennas connected or coupled to multiple wireless power receivers.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Publication number: 20170187231
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Patent number: 9673665
    Abstract: Techniques are described for accumulating data regarding the charging environment and power delivery efficiency at various regions in the environment under various transmission conditions. In some embodiments, this data may be utilized to generate efficient and sophisticated power transmission schedules; however, this data may also be leveraged for the manipulation of the standing waves within the environment. This allows for two discrete and powerful applications: creation of null zones and conversely the generation of high power regions. These regions may also be referred to as ‘power nulls’ and ‘energy balls’ respectively.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 6, 2017
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Dale Mayes, Benjamin Renneberg, Anas Alfarra
  • Publication number: 20170141620
    Abstract: The disclosed technology relates to wireless communication and wireless power transmission. In some implementations, the disclosed technology is directed to an integrated circuit having a transmitter that transmits radio frequency (RF) based wireless power and receives signals for detecting the location of a client device. The disclosed technology is also directed to an integrated circuit for a client device that receives power from the transmitter and transmits beacon signals, which the transmitter can use to locate the client device.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 18, 2017
    Inventors: Hatem Zeine, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams, Dale Mayes
  • Publication number: 20170141621
    Abstract: The disclosed technology relates to wireless communication and wireless power transmission. In some implementations, the disclosed technology is directed to an integrated circuit having a transmitter that transmits radio frequency (RF) based wireless power and receives signals for detecting the location of a client device. The disclosed technology is also directed to an integrated circuit for a client device that receives power from the transmitter and transmits beacon signals, which the transmitter can use to locate the client device.
    Type: Application
    Filed: December 19, 2016
    Publication date: May 18, 2017
    Inventors: Hatem Zeine, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams, Dale Mayes
  • Patent number: 9632554
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 25, 2017
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Patent number: 9620996
    Abstract: The disclosed system utilizes multiple wireless power receivers (antennas and or paths) for receiving power. The disclosed system includes a chip, such as an application specific chip (ASICs) connectable to multiple antennas and units to convert radio frequency (RF) power into direct current (DC) power. The disclosed system can also include antennas that are used to receiving power, communicate, and send a beacon signal. The disclosed system also comprises a mobile electronic device to receive wireless power using multiple antennas connected or coupled to multiple wireless power receivers.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 11, 2017
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Publication number: 20170005531
    Abstract: In retrodirective wireless power delivery environments wireless power receivers generate and send beacon signals that are received by multiple antennas of a wireless power transmission system. The beacon signals provide the charger with timing information for wireless power transfers and also indicate directionality of the incoming signal. As discussed herein, the directionality information is employed when transmitting in order to focus energy (e.g., power wave delivery) on individual wireless power receiver clients. Techniques are described herein for reducing the burden of sampling the beacon signals across the multiple antennas and determining the directionality of the incoming wave. In some embodiments, the techniques leverage previously calculated values to simplify the receiver sampling.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 5, 2017
    Inventors: Hatem Zeine, Dale Mayes, Benjamin Renneberg
  • Publication number: 20170005533
    Abstract: Techniques for automated clock synchronization and control are discussed herein. For example, the techniques can include monitoring of transmissions for ‘known’ events and identifying timing or frequencies of such events. Deviations in the timing or frequencies of the events from expected times or frequencies may indicate that wireless power transmission system and receiver clocks are not synchronized. The deviations can be used to synchronize the clock for optimum wireless power transfer. Techniques are also described for enhancing clock control mechanisms to provide additional means for managing the adjustments of the clocks, as well as for enabling wireless power transmission systems to mimic client clock offsets for effective synchronization of events (e.g., beacon signals).
    Type: Application
    Filed: June 29, 2016
    Publication date: January 5, 2017
    Inventors: Hatem Zeine, Dale Mayes
  • Publication number: 20170005530
    Abstract: Techniques are described for accumulating data regarding the charging environment and power delivery efficiency at various regions in the environment under various transmission conditions. In some embodiments, this data may be utilized to generate efficient and sophisticated power transmission schedules; however, this data may also be leveraged for the manipulation of the standing waves within the environment. This allows for two discrete and powerful applications: creation of null zones and conversely the generation of high power regions. These regions may also be referred to as ‘power nulls’ and ‘energy balls’ respectively.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 5, 2017
    Inventors: Hatem Zeine, Dale Mayes, Benjamin Renneberg, Anas Alfarra
  • Publication number: 20170005520
    Abstract: Techniques are described herein for load balancing wireless power receiver clients over multiple wireless power transmission systems in a wireless power delivery environment. In some embodiments, a method is described. The method includes identifying transmitter load information associated with at least two wireless power transmission systems of the multiple wireless power transmission systems, detecting a load imbalance between the at least two wireless power transmission systems based, at least in part, on the transmitter load information, and determining one or more operations for improving the load imbalance. The method further includes directing one or more of the at least two wireless power transmission systems to perform the one or more operations.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 5, 2017
    Inventors: Hatem Zeine, Dale Mayes
  • Publication number: 20160356860
    Abstract: Techniques are described herein for collecting and utilizing diagnostic information for advanced monitoring of wireless power delivery systems. Wireless power transmission systems and/or cloud processing systems accumulate significant volumes of data related to wireless devices, usage patterns, power delivery efficiency and system components. This data can be utilized to generate efficient and sophisticated power transmission schedules. Additionally, as discussed herein, the diagnostic information can be leveraged for advanced system diagnostics and health monitoring. Among other features, the diagnostic and health monitoring system can detect patterns and correlate events that lead to system errors or failures. In some embodiments, the diagnostic and health monitoring system can also provide error notification and/or automatic error correction.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 8, 2016
    Inventors: Hatem Zeine, Fady El-Rukby, Dale Mayes
  • Publication number: 20160359379
    Abstract: Techniques are described herein for determining which power receiver clients are within a set network and limiting power transmission to these select clients. Ignoring some power requests frees up the wireless power transmission system to preferentially supply power to wireless power receiver clients that are determined to be of higher importance.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 8, 2016
    Inventors: Hatem Zeine, Dale Mayes
  • Publication number: 20160359376
    Abstract: Techniques are described herein for utilizing power requirements of a device in order to schedule wireless power delivery in wireless power delivery environments. In some embodiments, the techniques can alternatively or additionally employ advanced usage based power models to schedule wireless power delivery in wireless power delivery environments. For embodiments where device usage information is utilized, various means of collecting and analyzing the usage data may be employed. Furthermore, in some embodiments, some of the usage data may be ignored in order to ensure that the usage models for the device are not polluted with abnormal or detrimental data.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 8, 2016
    Inventors: Hatem Zeine, Dale Mayes, Fady El-Rukby, Douglas Williams, Prithvi Shylendra
  • Publication number: 20160359377
    Abstract: Techniques are described for retention of known data within a wireless power transmission system, or within a cloud-based processing system. In order to perform scheduling procedures for determining which device to power, it is necessary to collect data regarding a device, e.g., the battery type, power usage, device model, present charge level and amount of power delivered per power cycle. A wireless power receiver client typically needs to collect or infer the information from the device and then provide the information directly to the charger via a messaging protocol. In existing wireless power transmission systems, information is re-transmitted to the wireless power transmission system every time the receiver engages or reengages the system.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 8, 2016
    Inventors: Hatem Zeine, Dale Mayes, Fady El-Rukby
  • Publication number: 20160359380
    Abstract: Techniques are described herein for leveraging these existing components of electronic devices with wireless or internet connectivity to reduce cost, size and complexity of electronic devices while enabling wireless power transfer. The techniques described herein can also be utilized to new low cost dual-function devices that utilize one or more of the same components for both wireless connectively and wireless power transfer.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 8, 2016
    Inventors: Hatem Zeine, Dale Mayes
  • Publication number: 20160301256
    Abstract: Techniques for static tuning retro-directive wireless power transmission systems are described herein. The techniques described herein include systems, methods and software for establishing a static tuning mode for a retro-directive wireless power transmission system. The static tuning mode can generate an extended stable power sphere that facilitates accurate RF and other measurements. Additionally, techniques are provided for characterizing the wireless power delivery paths.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 13, 2016
    Inventors: Hatem Zeine, Dale Mayes
  • Publication number: 20160301243
    Abstract: Techniques are described herein for inferring a status of a primary battery for an electronic device in a wireless power delivery environment. In some embodiments, the status of the primary battery can be inferred, without any feedback regarding a status of the primary battery, based on a wireless charging profile of the primary battery and power usage characteristics that are monitored. In some embodiments, the wireless power transmission system utilizes the information inferred about a particular wireless device's primary battery to control or allocate how much wireless power is allocated to a particular wireless power receiver client embedded and/or otherwise associated with the wireless device.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 13, 2016
    Inventors: Hatem Zeine, Dale Mayes
  • Publication number: 20160301259
    Abstract: The disclosed system utilizes multiple wireless power receivers (antennas and or paths) for receiving power. The disclosed system includes a chip, such as an application specific chip (ASICs) connectable to multiple antennas and units to convert radio frequency (RF) power into direct current (DC) power. The disclosed system can also include antennas that are used to receiving power, communicate, and send a beacon signal. The disclosed system also comprises a mobile electronic device to receive wireless power using multiple antennas connected or coupled to multiple wireless power receivers.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 13, 2016
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Publication number: 20160299549
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 13, 2016
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams