Patents by Inventor Dale Scott Crombez

Dale Scott Crombez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938842
    Abstract: A vehicle includes a powertrain having an electric machine configured to power driven wheels, an accelerator pedal, and friction brakes. A vehicle controller is programmed to, with the vehicle being in a one-pedal driving mode: in response to a braking torque capacity of the powertrain exceeding a target braking torque that is based on a position of the accelerator pedal, command a torque, that is equal to the target braking torque, from the powertrain such that the vehicle is slowed using the powertrain without application of the friction brakes, and, in response to the braking torque capacity of the powertrain being less than the target braking torque, command torques from the powertrain and the friction brakes such that the target braking torque is satisfied and the vehicle is slowed using the powertrain and the friction brakes.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: March 26, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Dale Scott Crombez, Bryan Michael Bolger, Alexander McCollough, Sergey Gennadievich Semenov, Brandon Jay Woodland
  • Publication number: 20230415715
    Abstract: Methods, apparatus, systems, and articles of manufacture to reduce end of stop jerk are disclosed. An example vehicle includes a user interface, a brake system, and a controller to execute instructions to detect a command to engage the brake system at a command brake pressure, estimate a time until the vehicle comes to a stop, and in response to determining that the time satisfies a time threshold, engage the brake system at a delivered brake pressure less than the command brake pressure.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Alexandra Sharlow, Dale Scott Crombez, Steven Remington
  • Patent number: 11820254
    Abstract: A hybrid electric vehicle having one or more controllers, at least two independently driven electric machines (EMs) that are each coupled to separate drive wheels, and controllers configured to generate a torque split ratio responsive to lateral acceleration and/or unequal friction coefficients detected during braking, and to generate electric power with the motors by regeneratively braking each wheel with unequal torques adjusted by the ratio, such that combined wheel braking torques do not exceed a total braking torque limit for the vehicle. In some configurations, the controller(s) generate the torque split ratio by a predetermined lookup table that maps a plurality of torque split ratios to lateral accelerations, the coefficients, and other parameters. Further arrangements include the controller(s) coupled with sensors that detect wheel slip and yaw rate, and responsive to a braking signal, the controller(s) disengage regenerative braking when the wheel slip and/or vehicle yaw are detected.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: November 21, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Dale Scott Crombez, Ming Lang Kuang, Yanan Zhao
  • Publication number: 20230085556
    Abstract: A vehicle includes a powertrain having an electric machine configured to power driven wheels, an accelerator pedal, and friction brakes. A vehicle controller is programmed to, with the vehicle being in a one-pedal driving mode: in response to a braking torque capacity of the powertrain exceeding a target braking torque that is based on a position of the accelerator pedal, command a torque, that is equal to the target braking torque, from the powertrain such that the vehicle is slowed using the powertrain without application of the friction brakes, and, in response to the braking torque capacity of the powertrain being less than the target braking torque, command torques from the powertrain and the friction brakes such that the target braking torque is satisfied and the vehicle is slowed using the powertrain and the friction brakes.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 16, 2023
    Inventors: Dale Scott Crombez, Bryan Michael Bolger, Alexander McCollough, Sergey Gennadievich Semenov, Brandon Jay Woodland
  • Patent number: 11498429
    Abstract: A vehicle includes a powertrain having an electric machine configured to power driven wheels, an accelerator pedal, and friction brakes. A vehicle controller is programmed to, with the vehicle being in a one-pedal driving mode: in response to a braking torque capacity of the powertrain exceeding a target braking torque that is based on a position of the accelerator pedal, command a torque, that is equal to the target braking torque, from the powertrain such that the vehicle is slowed using the powertrain without application of the friction brakes, and, in response to the braking torque capacity of the powertrain being less than the target braking torque, command torques from the powertrain and the friction brakes such that the target braking torque is satisfied and the vehicle is slowed using the powertrain and the friction brakes.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 15, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Dale Scott Crombez, Bryan Michael Bolger, Alexander McCollough, Sergey Gennadievich Semenov, Brandon Jay Woodland
  • Patent number: 11305773
    Abstract: A method for controlling a vehicle includes monitoring the vehicle speed for a first threshold in conjunction with a driver request for negative torque, after which the method comprises increasing a friction braking ratio. The method further comprises monitoring the speed of the vehicle for a second threshold, wherein the second threshold is lower than the first, after which the method comprises solely using the friction braking for braking holding torque.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: April 19, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Sergey Gennadievich Semenov, Bryan Michael Bolger, Angel Fernando Porras, Devin James O'Donnell, Dale Scott Crombez, Alexander McCollough
  • Publication number: 20220097707
    Abstract: A method for controlling a vehicle includes monitoring the vehicle speed for a first threshold in conjunction with a driver request for negative torque, after which the method comprises increasing a friction braking ratio. The method further comprises monitoring the speed of the vehicle for a second threshold, wherein the second threshold is lower than the first, after which the method comprises solely using the friction braking for braking holding torque.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Inventors: Sergey Gennadievich Semenov, Bryan Michael Bolger, Angel Fernando Porras, Devin James O'Donnell, Dale Scott Crombez, Alexander McCollough
  • Publication number: 20220097528
    Abstract: A vehicle includes a powertrain having an electric machine configured to power driven wheels, an accelerator pedal, and friction brakes. A vehicle controller is programmed to, with the vehicle being in a one-pedal driving mode: in response to a braking torque capacity of the powertrain exceeding a target braking torque that is based on a position of the accelerator pedal, command a torque, that is equal to the target braking torque, from the powertrain such that the vehicle is slowed using the powertrain without application of the friction brakes, and, in response to the braking torque capacity of the powertrain being less than the target braking torque, command torques from the powertrain and the friction brakes such that the target braking torque is satisfied and the vehicle is slowed using the powertrain and the friction brakes.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Inventors: Dale Scott Crombez, Bryan Michael Bolger, Alexander McCollough, Sergey Gennadievich Semenov, Brandon Jay Woodland
  • Patent number: 11225238
    Abstract: A vehicle includes a power source configured to provide drive torque, a front axle, a rear axle, and a transfer case configured to distribute drive torque from the power source between the front axle and the rear axle. The vehicle additionally includes a clutch arranged between the front axle and the transfer case. The clutch has a disengaged state and an engaged state drivingly coupling the transfer case and the front axle. The vehicle also includes a regenerative braking system configured to, in response to a braking request, provide regenerative braking torque to the rear axle. The vehicle further includes a controller. The controller is configured to, in response to a braking request and the clutch being in the disengaged state, control the clutch to shift into the engaged state to couple the regenerative braking system to the front axle and provide regenerative braking torque to the front axle.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: January 18, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Scott J. Lauffer, Ashok E. Rodrigues, Dale Scott Crombez, Andreas E. Perakes, Filip Tomik, Kevin Kootsillas, Michael Paul Lindlbauer
  • Patent number: 11027613
    Abstract: A regenerative braking control system includes at least one sensor adapted to sense a front tire impact event and transmit a sensor signal responsive to the front tire impact event during vehicle braking and a regenerative powertrain interfacing with the at least one sensor and adapted to reduce regenerative braking torque responsive to receiving the sensor signal from the at least one sensor. A regenerative braking control method is also disclosed.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: June 8, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Jinkoo Lee, Dale Scott Crombez, Daniel A. Gabor, Kerem Bayar
  • Patent number: 10821948
    Abstract: A vehicle includes a user-actuatable switch and a controller. When the switch is actuated, the controller is adapted to effect a regenerative braking command to actuate a regenerative brake system when a vehicle speed is above a threshold speed, and to effect a parking brake command to actuate an electric park brake when the vehicle speed is less than or equal to the threshold speed.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 3, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Moses Alexander Fridman, Kevin Sallee, Dale Scott Crombez
  • Patent number: 10814727
    Abstract: Methods and systems are provided for operating a hybrid vehicle during operating conditions where vehicle braking is requested. In one example, regenerative braking is allocated to vehicle wheels responsive to actual and estimated vehicle yaw. Additionally, friction braking torque is allocated to vehicle wheels responsive to requested braking torque and regenerative braking torques.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: October 27, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Yanan Zhao, Ming Lang Kuang, Dale Scott Crombez, Walter Joseph Ortmann, Xiaoyong Wang
  • Patent number: 10730393
    Abstract: Methods and systems are provided for operating a hybrid vehicle during operating conditions where vehicle braking is requested. In one example, regenerative braking is allocated to vehicle axles responsive to wheel torques of respective vehicle axles in response to an anti-lock braking system being activated. Additionally, friction braking torque is allocated to vehicle axles responsive to the anti-lock braking system being activated.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: August 4, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Dale Scott Crombez, David John Messih, Yanan Zhao, Ming Lang Kuang, Walter Joseph Ortmann, Joseph Jay Torres, Stanley L. Bower, Jr.
  • Patent number: 10647305
    Abstract: Systems and methods for cancelling brake torque variation in a motor vehicle are disclosed. Signals indicative of brake torque variation are received at a controller. Based on the signals, a frequency associated with the indicated brake torque variation is determined. At least one of an output time and output volume of pressurized brake fluid is adjusted based on the frequency to cancel the indicated brake torque variation.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: May 12, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Bradley J. Johnson, Dale Scott Crombez, John P. Joyce, Eric M. Gamberg
  • Publication number: 20200079219
    Abstract: In a hybrid vehicle, brake force is divided between friction brakes and regenerative braking. When the friction brakes are wet, the delivered braking force may exceed the commanded braking force resulting in a poor transition from regenerative braking to friction braking. When wet friction brakes are detected, a controller allocates more of the total braking energy to friction brakes until a threshold quantity of energy has been dissipated in the friction brakes, thus drying the friction brakes over fewer braking events than otherwise.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 12, 2020
    Inventors: Shunsuke Okubo, Dale Scott Crombez
  • Publication number: 20190337391
    Abstract: A hybrid electric vehicle having one or more controllers, at least two independently driven electric machines (EMs) that are each coupled to separate drive wheels, and controllers configured to generate a torque split ratio responsive to lateral acceleration and/or unequal friction coefficients detected during braking, and to generate electric power with the motors by regeneratively braking each wheel with unequal torques adjusted by the ratio, such that combined wheel braking torques do not exceed a total braking torque limit for the vehicle. In some configurations, the controller(s) generate the torque split ratio by a predetermined lookup table that maps a plurality of torque split ratios to lateral accelerations, the coefficients, and other parameters. Further arrangements include the controller(s) coupled with sensors that detect wheel slip and yaw rate, and responsive to a braking signal, the controller(s) disengage regenerative braking when the wheel slip and/or vehicle yaw are detected.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 7, 2019
    Inventors: Dale Scott Crombez, Ming Lang Kuang, Yanan Zhao
  • Patent number: 10399440
    Abstract: Methods and systems are provided for operating a hybrid vehicle during operating conditions where vehicle braking is requested. In one example, regenerative braking is permitted during conditions of wheel slip so that a greater portion of a vehicle's kinetic energy may be recovered and stored as electrical energy. Additionally, in some examples, the amount of regenerative braking is adjusted responsive to a torque of a differential clutch during wheel slip conditions.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: September 3, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Yanan Zhao, Ming Lang Kuang, Xiaoyong Wang, Dale Scott Crombez, Walter Joseph Ortmann
  • Publication number: 20190217709
    Abstract: Methods and systems are provided for operating a hybrid vehicle during operating conditions where vehicle braking is requested. In one example, regenerative braking is allocated to vehicle wheels responsive to actual and estimated vehicle yaw. Additionally, friction braking torque is allocated to vehicle wheels responsive to requested braking torque and regenerative braking torques.
    Type: Application
    Filed: January 15, 2018
    Publication date: July 18, 2019
    Inventors: Yanan Zhao, Ming Lang Kuang, Dale Scott Crombez, Walter Joseph Ortmann, Xiaoyong Wang
  • Patent number: 10336315
    Abstract: A controller and a control strategy minimizes shift shock in a hybrid electric vehicle during a downshift conducted while the vehicle is in a regenerative braking mode by maintaining total powertrain torque at a desired target during the downshift. The controller has three preferable modes including modulating just engine torque, modulating just electric motor torque or simultaneously modulating both motor and engine torque.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: July 2, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Barney D Nefcy, Francis Thomas Connolly, Dan Colvin, Walt Joseph Ortmann, Marvin Paul Kraska, Dale Scott Crombez, Mark Steven Yamazaki
  • Publication number: 20190135249
    Abstract: A vehicle includes a user-actuatable switch and a controller. When the switch is actuated, the controller is adapted to effect a regenerative braking command to actuate a regenerative brake system when a vehicle speed is above a threshold speed, and to effect a parking brake command to actuate an electric park brake when the vehicle speed is less than or equal to the threshold speed.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 9, 2019
    Inventors: Moses Alexander Fridman, Kevin Sallee, Dale Scott Crombez