Patents by Inventor Dale Webb

Dale Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12245534
    Abstract: A method and system having instructions to perform actions include obtaining images of an agricultural environment including a first image comprising at least one background portion and one or more regions of interest, implementing a machine learning (ML) algorithm on a portion of the first image including a portion of the background portion and the one or more regions of interest, detecting a plurality of objects associated with a plurality of real-world objects in the agricultural environment in at least one region of interest in the one or more regions of interest of the first image including detecting a first object and detecting a second object, implementing a second algorithm on the portion of the first image comprising the first object to detect one or more divided features of the first object, tracking a feature of the one or more divided features across subsequent images as the moving platform traverses the agricultural environment, tracking the second object, and selecting a target action configured
    Type: Grant
    Filed: March 25, 2024
    Date of Patent: March 11, 2025
    Assignee: VERDANT ROBOTICS, INC.
    Inventors: Gabriel Thurston Sibley, Lorenzo Ibarria, Curtis Dale Garner, Patrick Christopher Leger, Dustin James Webb
  • Publication number: 20240379310
    Abstract: A disclosed CPS relay assembly includes a polymeric housing, a relay switch printed circuit board (PCB) assembly (PCA) within the housing, a thermal substrate or heatsink, and a film of isolation material between the thermal substrate and the relay switch PCA. The isolation material may be a thermally conductive and electrically isolating potting compound. The relay assembly may further include a relay control PCA within the housing. The housing itself may comprise an injection molded plastic, e.g., thermoset or thermoplastic. The housing may include one or more standoff features configured to define a gap of a predetermined dimension between the thermal substrate and the relay switch PCA. The isolation material may exhibit a thermal conductivity of 0.1-3 W/m-K and one or more desirable characteristics for maintaining electrical isolation of the relay assembly.
    Type: Application
    Filed: May 10, 2024
    Publication date: November 14, 2024
    Applicant: American Innovations, Ltd.
    Inventors: Chris Jones, Zee McClane, Dan Huslig, Dale Webb, Garrett Jones
  • Patent number: 9058529
    Abstract: Radio-frequency identification-(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: June 16, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: James G. Renfro, Jr., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 8731405
    Abstract: Radio-frequency identification—(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: May 20, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: James G. Renfro, Jr., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 8649684
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). A microprocessor-based control system or systems may also be employed.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 11, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Raymond A. Casterline, Gary L. Coakley, Vladimir M. Cotfas, Eric M. Sadowski, Michael Sauer, Dale A. Webb, Steven C. Kapp, Rajeshkannan Palanisamy, David R. Peters, Michael B. Webb
  • Publication number: 20130328666
    Abstract: Radio-frequency identification-(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Corning Cable Systems
    Inventors: James G. Renfro, JR., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 8532492
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). In one embodiment, calibration of communication downlinks and communication uplinks is performed to compensate for signal strength losses in the system.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: September 10, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Rajeshkannan Palanisamy, David R. Peters, Eric M. Sadowski, Michael Sauer, Dale A. Webb
  • Publication number: 20120134673
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). In one embodiment, calibration of communication downlinks and communication uplinks is performed to compensate for signal strength losses in the system.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 31, 2012
    Inventors: Rajeshkannan Palanisamy, David R. Peters, Eric M. Sadowski, Michael Sauer, Dale A. Webb
  • Publication number: 20120134666
    Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). A microprocessor-based control system or systems may also be employed.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 31, 2012
    Inventors: Raymond A. Casterline, Gary L. Coakley, Vladimir M. Cotfas, Eric M. Sadowski, Michael Sauer, Dale A. Webb, Steven C. Kapp, Rajeshkannan Palanisamy, David R. Peters, Michael B. Webb
  • Publication number: 20100052863
    Abstract: Radio-frequency identification—(RFID)-based systems and methods for collecting telecommunications information is disclosed. The methods include storing transceiver information in a transceiver and connector information in an optical fiber connector, and then operably connecting the connector to the transceiver. The connection results in an electrical connection that allows the transceiver information to be communicated to the connector. The connector has a RFID tag that generates a connector RFID-tag signal that includes the connector information and the transceiver information. When electronics equipment are connected to the transceiver, electronics-equipment information is passed through the transceiver to the connector so that the electronics-equipment information can be included in the connector RFID-tag signal.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 4, 2010
    Inventors: James G. Renfro, JR., Richard E. Wagner, Matthew S. Whiting, Dale A. Webb, James S. Sutherland, John D. Downie
  • Patent number: 4068988
    Abstract: In the embodiment of the invention as depicted, the same comprising a rotary compressor, a channel or passageway is provided in the machine to communicate two variable volume chambers which are formed by rotary pistons and walls of the compressor housing, to equalize pressure in the two chambers. The purpose here is to prevent one chamber from pre-compressing before the other, so that a small pocket formed between the rotors by the inter-engaging teeth will not come up to pressure, and be expanded back into the inlet, to avoid a clearance loss and a waste of horsepower.
    Type: Grant
    Filed: July 30, 1976
    Date of Patent: January 17, 1978
    Assignee: Ingersoll-Rand Company
    Inventors: Paul Dale Webb, Larry Neil Willover
  • Patent number: 4050701
    Abstract: The novel seal comprises a non-contacting, floating ring seal formed, by injection molding, of carbon fiber-reinforced polyphenylene sulfide, for use in fluid-sealing a rotary steel shaft. The reinforced polyphenylene sulfide exhibits thermal expansion which is substantially equal to that of steel; thus a predetermined radial clearance is maintained, between the seal and the shaft without the need for a circumferential steel band, or the like, shrunk onto the seal.
    Type: Grant
    Filed: November 26, 1976
    Date of Patent: September 27, 1977
    Assignee: Ingersoll-Rand Company
    Inventor: Paul Dale Webb