Patents by Inventor Dallas B. Noyes

Dallas B. Noyes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150147261
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes treating a carbonaceous compound to form a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C. The carbon allotropes are separated from a reactor effluent stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: May 28, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150114819
    Abstract: Methods and a system for removing carbon nanotubes from a water stream are provided herein. The system includes a purification vessel, wherein the purification vessel is configured to form a carbon oxide from the carbon nanotubes within the water stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: April 30, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Publication number: 20150093323
    Abstract: A system and methods for forming carbon allotropes are described. The system includes a reactor configured to use a catalyst to form a carbon allotrope from a feed stock in a Bosch reaction. The catalyst includes a roughened metal surface.
    Type: Application
    Filed: April 10, 2013
    Publication date: April 2, 2015
    Inventors: Russell J. Koveal, JR., Dallas B. Noyes, Terry A. Ring
  • Publication number: 20150086468
    Abstract: A method of reducing a gaseous carbon oxide includes reacting a carbon oxide with a gaseous reducing agent in the presence of a non-ferrous catalyst. The reaction proceeds under conditions adapted to produce solid carbon of various allotropes and morphologies, the selective formation of which can be controlled by means of controlling reaction gas composition and reaction conditions including temperature and pressure. A method for utilizing a non-ferrous catalyst in a reactor includes placing the catalyst in a suitable reactor and flowing reaction gases comprising a carbon oxide with at least one gaseous reducing agent through the reactor where, in the presence of the catalyst, at least a portion of the carbon in the carbon oxide is converted to solid carbon and a tail gas mixture containing water vapor.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 26, 2015
    Inventor: Dallas B. Noyes
  • Publication number: 20150078982
    Abstract: Methods of capturing or sequestering carbon include introducing a reaction gas stream to a catalytic converter to convert a portion of the carbon in the carbon oxide to solid carbon and a tail gas stream containing water vapor, removing the solid carbon from the catalytic converter for use, disposal, or storage, and recycling at least a portion of the tail gas stream to the catalytic converter. Methods may also include removing a portion of the water from the tail gas stream. The tail gas stream includes a portion of the initial process gas stream and at least a portion of water vapor produced in the catalytic converter. Methods may also include removing water vapor from various streams and reacting the carbon oxide with a reducing agent in the presence of a catalyst. Systems for capturing or sequestering carbon from a gaseous source containing carbon oxides are also described.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 19, 2015
    Inventor: Dallas B. Noyes
  • Publication number: 20150078981
    Abstract: A method of reducing a gaseous carbon oxide includes reacting a carbon oxide with a gaseous reducing agent in the presence of a steel catalyst. The reaction proceeds under conditions adapted to produce solid carbon of various allotropes and morphologies the selective formation of which can be controlled by means of controlling reaction gas composition and reaction conditions including temperature and pressure. A method for utilizing a steel catalyst for reducing carbon oxides includes placing the steel catalyst in a suitable reactor and flowing reaction gases comprising a carbon oxide with at least one gaseous reducing agent through the reactor where, in the presence of the steel catalyst, at least a portion of the carbon in the carbon oxide is converted to solid carbon and a tail gas mixture containing water vapor.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 19, 2015
    Applicant: SEERSTONE LLC
    Inventor: Dallas B. Noyes
  • Publication number: 20150071846
    Abstract: A two-stage reaction process includes reacting gaseous carbon dioxide with a reducing agent to form carbon monoxide and water. At least a portion of the water is condensed to form a dry tail gas. The dry tail gas, with the possible addition of a reducing agent, reacts to convert at least a portion of the carbon monoxide to solid carbon and water. Other methods include reacting a feed gas mixture to form a reaction mixture, condensing water from the reaction mixture to form a dried reaction mixture, mixing the dried reaction mixture with a recirculating gas to form a catalytic converter feed gas mixture, flowing the catalytic converter feed gas mixture through a catalytic converter to form solid carbon and a tail gas mixture containing water, and flowing the tail gas mixture through a heat exchanger.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 12, 2015
    Inventor: Dallas B. Noyes
  • Publication number: 20150071848
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes forming a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C., and the carbon allotropes are separated from a reactor effluent stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 12, 2015
    Applicant: Solid Carbon Products LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150059571
    Abstract: Systems and a method for removing carbon nanotubes from a continuous reactor effluent are provided herein. The method includes flowing the continuous reactor effluent through a separation vessel, separating carbon nanotubes from the continuous reactor effluent in the separation vessel, and generating a stream including gaseous components from the continuous reactor effluent.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 5, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150059527
    Abstract: A method of treating an offgas includes purifying the offgas to remove particulate matter, water, undesirable gaseous components and inert gases to produce a dried carbon oxide gas feedstock, and converting at least a portion of carbon oxides in the dried carbon oxide gas feedstock into solid carbon. In other embodiments, a method includes passing a dried carbon oxide gas feedstock through a multi-stage catalytic converter. A first stage is configured to catalyze methane-reforming reactions to convert methane into carbon dioxide, carbon monoxide and hydrogen with residual methane. A second stage is configured to catalyze the Bosch reaction and convert carbon oxides and hydrogen to solid carbon and water.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Inventor: Dallas B. Noyes
  • Publication number: 20150064092
    Abstract: Methods of producing fibrous solid carbon forests include reacting carbon oxides with gaseous reducing agents in the presence of a catalyst having a predetermined grain size to cause growth of fibrous solid carbon forests upon a surface of the metal. The fibrous solid carbon forests are substantially perpendicular to the surface of the metal thus creating the “forests”. A bi-modal forest composition of matter is described in which a primary distribution of fibrous solid carbon comprises the forest and a secondary distribution of fibrous solid carbon is entangled with the primary distribution. A reactor includes a catalyst, a means for facilitating the reduction of a carbon oxide to form solid carbon forests on a surface of the catalyst, and a means for removing the solid carbon forest from the surface of the metal catalyst.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Applicant: SEERSTONE LLC
    Inventor: Dallas B. Noyes
  • Publication number: 20150064096
    Abstract: A method of thermal energy recovery from production of at least one solid carbon material comprises reacting at least one carbon oxide material and at least one gaseous reducing material at a temperature of greater than or equal to about 400° C., at a pressure greater than or equal to about 1×105 pascal, and in the presence of at least one catalyst material to produce at least one solid carbon material and a gaseous effluent stream comprising water vapor. Thermal energy is extracted from the gaseous effluent stream comprising water vapor. Other methods of generating recoverable thermal energy are disclosed, as is a solid carbon production system having thermal energy recovery.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Applicant: Seerstone LLC
    Inventor: Dallas B. Noyes
  • Publication number: 20150064097
    Abstract: A composition comprising a mixture of carbon nanotubes having a bi-modal size distribution are produced by reducing carbon oxides with a reducing agent in the presence of a catalyst. The resulting mixture of nanotubes include a primary population of multiwall carbon nanotubes having characteristic diameters greater than 40 nanometers, and a secondary population of what are apparently single wall nanotubes with characteristic diameters of less than 30 nanometers. The resulting mixture may also contain one or more other allotropes and morphologies of carbon in various proportions.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Inventor: Dallas B. Noyes
  • Publication number: 20140348739
    Abstract: Systems and a method for forming carbon nanotubes are described. A method includes forming carbon nanotubes in a reactor, using a Bosch reaction. The carbon nanotubes are separated from a reactor effluent to form a waste gas stream. The feed gas, a dry waste gas stream, or both, are heated with waste heat from the waste gas stream. The waste gas stream is chilled in an ambient temperature heat exchanger to condense water vapor, forming a dry waste gas stream.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 27, 2014
    Inventors: Robert D. Denton, Dallas B. Noyes
  • Publication number: 20140141248
    Abstract: A method for production of various morphologies of solid carbon product by reducing carbon oxides with a reducing agent in the presence of a catalyst. The carbon oxides are typically either carbon monoxide or carbon dioxide. The reducing agent is typically either a hydrocarbon gas or hydrogen. The desired morphology of the solid carbon product may be controlled by the specific catalysts, reaction conditions, and optional additives used in the reduction reaction. The resulting solid carbon products have many commercial applications.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: SEERSTONE LLC
    Inventor: Dallas B. Noyes
  • Patent number: 8679444
    Abstract: A method for production of various morphologies of solid carbon product by reducing carbon oxides with a reducing agent in the presence of a catalyst. The carbon oxides are typically either carbon monoxide or carbon dioxide. The reducing agent is typically either a hydrocarbon gas or hydrogen. The desired morphology of the solid carbon product may be controlled by the specific catalysts, reaction conditions, and optional additives used in the reduction reaction. The resulting solid carbon products have many commercial applications.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: March 25, 2014
    Assignee: Seerstone LLC
    Inventor: Dallas B. Noyes
  • Publication number: 20140021827
    Abstract: Primary voltaic sources include nanofiber Schottky barrier arrays and a radioactive source including at least one radioactive element configured to emit radioactive particles. The arrays have a semiconductor component and a metallic component joined at a metal-semiconductor junction. The radioactive source is positioned proximate to the arrays such that at least a portion of the radioactive particles impinge on the arrays to produce a flow of electrons across the metal-semiconductor junction. Methods of producing voltaic sources include reacting at least one carbon oxide and a reducing agent in the presence of a substrate comprising a catalyst to form a solid carbon product over the substrate. Material is disposed over at least a portion of the solid carbon product to form a nanofiber Schottky barrier array. A radioactive source is disposed adjacent the nanofiber Schottky barrier array.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 23, 2014
    Inventor: Dallas B. Noyes
  • Publication number: 20120034150
    Abstract: A method for the production of various morphologies of solid carbon product by reducing carbon oxides with a reducing agent in the presence of a catalyst. The carbon oxides are typically either carbon monoxide or carbon dioxide. The reducing agent is typically either a hydrocarbon gas or hydrogen. The desired morphology of the solid carbon product may be controlled by the specific catalysts, reaction conditions and optional additives used in the reduction reaction. The resulting solid carbon products have many commercial applications.
    Type: Application
    Filed: April 5, 2010
    Publication date: February 9, 2012
    Inventor: Dallas B. Noyes
  • Patent number: 5878406
    Abstract: A system for knowledge representation in a computer, together with the ability to recognize, store and use patterns in the knowledge representation, together with the ability for Natural Language Interaction with the knowledge representation system, together with means to automatically transform information in the knowledge representation into a multitude of documents or other human interpretable displays in a plurality of different formats or views. User interaction with the knowledge representation through the view documents is achievable through a multitude of various possible formats. The Knowledge Representation system defines a novel database engine constituting a method for modeling knowledge as a network of concepts and a plurality of relationships between the concepts comprising the network. Each concept is represented as a record in the database which is identified by a unique record reference number.
    Type: Grant
    Filed: January 13, 1997
    Date of Patent: March 2, 1999
    Inventor: Dallas B. Noyes
  • Patent number: 5594837
    Abstract: A system for knowledge representation in a computer has the ability to automatically transform information in the knowledge representation into a multitude of documents or other human interpretable displays in a plurality of different formats or views. User interaction with the knowledge representation through the view documents is achievable through a multitude of various possible formats. The Knowledge Representation system defines a novel database engine constituting a method for modeling knowledge as a network of concepts and a plurality of relationships between the concepts comprising the network. Each concept is represented as a record in the database which is identified by a unique record reference number. The unique record reference numbers are stored within the records comprising the database to record the plurality of relationships between concepts. System concept records are created which define system concepts as particular relational characteristics between two records in the database.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: January 14, 1997
    Inventor: Dallas B. Noyes