Patents by Inventor Dallas W. Meyer

Dallas W. Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8586398
    Abstract: Provided herein are methods of incorporating additives into thin-film solar cell substrates and back contacts. In certain embodiments, sodium is incorporated into a substrate or a back contact of a thin-film photovoltaic stack where it can diffuse into a CIGS or other absorber layer to improve efficiency and/or growth of the layer. The methods involve laser treating the substrate or back contact in the presence of a sodium (or sodium-containing) solid or vapor to thereby incorporate sodium into the surface of the substrate or back contact. In certain embodiments, the surface is simultaneously smoothed.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 19, 2013
    Assignee: Miasole
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Patent number: 8563847
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Tenksolar, Inc
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Patent number: 8546172
    Abstract: Provided herein are methods of polishing, cleaning and texturing back contacts of thin-film solar cells. According to various embodiments, the methods involve irradiating sites on the back contact with laser beams to remove contaminants and/or smooth the surface of the back contact. The back contact, e.g., a molybdenum, copper, or niobium thin-film, is smoothed prior to deposition of the absorber and other thin-films of the photovoltaic stack. In certain embodiments, laser polishing of the back contact is used to enhance the diffusion barrier characteristics of the back contact layer, with all or a surface layer of the back contact becoming essentially amorphous. In certain embodiments, the adhesion of the absorber layer is enhanced by the textured back contact and by the presence of the amorphous metal at the deposition surface.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: October 1, 2013
    Assignee: Miasole
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Patent number: 8536054
    Abstract: Provided herein are methods of polishing and texturing surfaces thin-film photovoltaic cell substrates. The methods involve laser irradiation of a surface having a high frequency roughness in an area of 5-200 microns to form a shallow and rapidly expanding melt pool, followed by rapid cooling of the material surface. The minimization of surface tension causes the surface to re-solidify in a locally smooth surface. the high frequency roughness drops over the surface with a lower frequency bump or texture pattern remaining from the re-solidification.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 17, 2013
    Assignee: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20130170072
    Abstract: In one example, a head is provided that may include a slider body, a transducer body, a transducer connected to the transducer body, and an interleaver assembly interconnecting the slider body and the transducer body. The interleaver assembly may include an interleaver body to which the transducer body is attached, the interleaver body having a plurality of geometric features that enable temporary deformation of the interleaver body in response to exertion of a force on the interleaver body, and the interleaver body may further include piezoelectric elements positioned in the interleaver body, the piezoelectric elements operable such that, when selectively actuated, the piezoelectric elements exert a force on the interleaver body so as to effect selective movement of the transducer with respect to a surface of a medium.
    Type: Application
    Filed: February 26, 2013
    Publication date: July 4, 2013
    Inventor: Dallas W. Meyer
  • Publication number: 20130120878
    Abstract: A recording head for use in magnetic storage devices is disclosed. The recording head includes a transducer that is bi-directionally movable with respect to a surface of the magnetic storage medium, thereby enabling improved positioning of the transducer during recording head read and write operations. Various structures are disclosed to bi-directionally actuate the recording head transducer. In one embodiment, an interleaver assembly having a plurality of flexure assemblies employs a motor including magnetic portions for selective, bi-directional actuation. In another embodiment, electrostatic charges are employed in the flexure assemblies for selective actuation. In yet another embodiment, piezoelectric elements are included to provide for selective actuation.
    Type: Application
    Filed: October 8, 2012
    Publication date: May 16, 2013
    Inventor: Dallas W. Meyer
  • Patent number: 8307542
    Abstract: A method of assembling a recording head includes attaching a first segment having a plurality of toroidal coils to a second segment having a plurality of flexure beams to form a wafer assembly. The method also includes attaching the wafer assembly to a slider body such that a cavity portion of the second segment cooperates with a cavity portion in the slider body to form a transducer cavity. The method also includes vacuum attaching the slider body to a reference flat surface. The method also includes positioning a transducer body having a transducer in the transducer cavity using a touch sensor.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: November 13, 2012
    Inventor: Dallas W. Meyer
  • Patent number: 8284524
    Abstract: A recording head for use in magnetic storage devices is disclosed. The recording head includes a transducer that is bi-directionally movable with respect to a surface of the magnetic storage medium, thereby enabling improved positioning of the transducer during recording head read and write operations. The recording head includes an interleaver assembly having a plurality of flexure assemblies. Electrostatic charges are employed in the flexure assemblies for selective actuation to provide a motional force to the transducer.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 9, 2012
    Inventor: Dallas W. Meyer
  • Patent number: 8279559
    Abstract: One embodiment includes a track recording head for creating discrete tracks in a rotating magnetic storage medium. The track recording head includes a main body, at least one stylus, and a stylus actuator. The main body is configured to be attached to a head gimbal assembly. The main body has an air bearing surface configured to face a corresponding surface of the rotating magnetic storage medium. The stylus is formed on the air bearing surface and is configured to be actuated towards the surface of the rotating magnetic storage medium to contact and apply stress to the rotating magnetic storage medium to create isolation regions of non-directionally magnetizable material. The stylus actuator is formed in the main body and is configured to actuate the stylus.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: October 2, 2012
    Inventor: Dallas W. Meyer
  • Publication number: 20120234374
    Abstract: A method of forming a longitudinally continuous photovoltaic (PV) module includes arranging strips of thin-film PV material to be spaced apart from and substantially parallel to each other. The method also includes laminating a bottom layer to a first surface of the strips of thin-film PV material, the bottom layer including multiple bottom layer conductive strips. The method also includes laminating a top layer to a second surface of the strips of thin-film PV material opposite the first surface, the top layer including multiple top layer conductive strips. Laminating the bottom layer to the first surface and laminating the top layer to the second surface includes serially and redundantly interconnecting the strips of thin-film PV material together by connecting each one of the strips of thin-film PV material to a different one of the bottom layer conductive strips and a different one of the top layer conductive strips.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Applicant: TENKSOLAR
    Inventor: Dallas W. Meyer
  • Publication number: 20120204935
    Abstract: In an example, a solar energy system includes multiple PV modules, multiple reflectors, and a racking assembly. Each of the reflectors is positioned opposite a corresponding one of the PV modules. The racking assembly mechanically interconnects the PV modules and the reflectors to form an interconnected system. The racking assembly defines gaps within the racking assembly and between adjacent PV modules and reflectors. The interconnected system includes multiple contact points associated with the gaps. The gaps and contact points configure the interconnected system to accommodate surface unevenness of an installation surface up to a predetermined surface unevenness.
    Type: Application
    Filed: August 10, 2011
    Publication date: August 16, 2012
    Applicant: tenKsolar
    Inventors: Dallas W. Meyer, Lowell J. Berg, Lance E. Stover, Orville D. Dodd, Thomas L. Murnan
  • Patent number: 8212139
    Abstract: In some embodiments, a photovoltaic module includes an active layer, a top layer, and a bottom layer. The active layer includes a plurality of strips of thin-film PV material that are arranged spaced apart from and substantially parallel to each other. The top layer is disposed above the active layer and includes a substantially transparent film. The bottom layer is disposed below the active layer, the bottom layer including a conductive backsheet configured to form a current return path for the strips of thin-film PV material. The PV module further includes means for serially and redundantly interconnecting the strips of thin-film PV material together.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: July 3, 2012
    Assignee: Tenksolar, Inc.
    Inventor: Dallas W. Meyer
  • Publication number: 20110072645
    Abstract: A method of assembling a recording head includes attaching a first segment having a plurality of toroidal coils to a second segment having a plurality of flexure beams to form a wafer assembly. The method also includes attaching the wafer assembly to a slider body such that a cavity portion of the second segment cooperates with a cavity portion in the slider body to form a transducer cavity. The method also includes vacuum attaching the slider body to a reference flat surface. The method also includes positioning a transducer body having a transducer in the transducer cavity using a touch sensor.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 31, 2011
    Inventor: Dallas W. Meyer
  • Publication number: 20110038078
    Abstract: A recording head for use in magnetic storage devices is disclosed. The recording head includes a transducer that is bi-directionally movable with respect to a surface of the magnetic storage medium, thereby enabling improved positioning of the transducer during recording head read and write operations. Various structures are disclosed to bi-directionally actuate the recording head transducer. In one embodiment, an interleaver assembly having a plurality of flexure assemblies employs a motor including magnetic portions for selective, bi-directional actuation. In another embodiment, electrostatic charges are employed in the flexure assemblies for selective actuation. In yet another embodiment, piezoelectric elements are included to provide for selective actuation.
    Type: Application
    Filed: October 28, 2010
    Publication date: February 17, 2011
    Inventor: Dallas W. Meyer
  • Patent number: 7849585
    Abstract: A method of forming a reinforced slider body for use in a recording head having a transducer that is bi-directionally movable with respect to a surface of a magnetic medium. The method includes the steps of defining in a surface of a wafer a plurality of dice lanes having side walls to delineate a plurality of slider bodies on the wafer where the side walls having an angled configuration with respect to the wafer surface, polishing the dice lanes such that the interface between the wafer surface and the side walls is rounded, implanting a substance into the dice lanes; and applying a diamond-like carbon coating to the bottom surface and side walls of the dice lanes.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: December 14, 2010
    Inventor: Dallas W. Meyer
  • Patent number: 7835115
    Abstract: A recording head for use in magnetic storage devices is disclosed. The recording head includes flexure assemblies that can be selectively and electrically charged to provide a motional force to selectively move the flexure assemblies and to cause corresponding movement of a transducer with to a surface of a magnetic medium.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: November 16, 2010
    Inventor: Dallas W. Meyer
  • Publication number: 20100282293
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Application
    Filed: June 15, 2010
    Publication date: November 11, 2010
    Applicant: TENKSOLAR
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20100258982
    Abstract: Provided herein are methods of polishing and texturing surfaces thin-film photovoltaic cell substrates. The methods involve laser irradiation of a surface having a high frequency roughness in an area of 5-200 microns to form a shallow and rapidly expanding melt pool, followed by rapid cooling of the material surface. The minimization of surface tension causes the surface to re-solidify in a locally smooth surface. the high frequency roughness drops over the surface with a lower frequency bump or texture pattern remaining from the re-solidification.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100258185
    Abstract: Provided herein are textured substrates for thin-film solar cells. According to various embodiments, the textured substrates are characterized by substrate patterns exhibiting low-frequency roughness or flatness and long range order. The substrates may be metallic or non-metallic substrates, and in certain embodiments are stainless steel foils. According to various embodiments, the substrates may be provided in the form of a web, ready for deposition of thin-film photovoltaic stacks. Also provided are textured back contact thin films.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100258542
    Abstract: Provided herein are methods of polishing, cleaning and texturing back contacts of thin-film solar cells. According to various embodiments, the methods involve irradiating sites on the back contact with laser beams to remove contaminants and/or smooth the surface of the back contact. The back contact, e.g., a molybdenum, copper, or niobium thin-film, is smoothed prior to deposition of the absorber and other thin-films of the photovoltaic stack. In certain embodiments, laser polishing of the back contact is used to enhance the diffusion barrier characteristics of the back contact layer, with all or a surface layer of the back contact becoming essentially amorphous. In certain embodiments, the adhesion of the absorber layer is enhanced by the textured back contact and by the presence of the amorphous metal at the deposition surface.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl