Patents by Inventor Damian Feord

Damian Feord has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10829467
    Abstract: A process for producing a cyclic acetal is disclosed. According to the process, a formaldehyde source is combined with an aprotic compound and contacted with a heterogeneous catalyst which causes the formaldehyde source to convert into a cyclic acetal such as trioxane. The catalyst, for instance, may comprise a solid catalyst such as an ion exchange resin. In one embodiment, the process is used for converting anhydrous formaldehyde gas to trioxane. The anhydrous formaldehyde gas may be produced form an aqueous formaldehyde solution by an extractive distillation. The aprotic compound and the formaldehyde solution may be extracted from the reaction product and recycled into the process.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 10, 2020
    Assignee: Celanese Sales Germany GmbH
    Inventors: Joni Sianturi, Hanno Hueckstaedt, Matthias Göring, Damian Feord, Stanley Leonard
  • Publication number: 20190300497
    Abstract: A process for producing a cyclic acetal is disclosed. According to the process, a formaldehyde source is combined with an aprotic compound and contacted with a heterogeneous catalyst which causes the formaldehyde source to convert into a cyclic acetal such as trioxane. The catalyst, for instance, may comprise a solid catalyst such as an ion exchange resin. In one embodiment, the process is used for converting anhydrous formaldehyde gas to trioxane. The anhydrous formaldehyde gas may be produced form an aqueous formaldehyde solution by an extractive distillation. The aprotic compound and the formaldehyde solution may be extracted from the reaction product and recycled into the process.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Inventors: Joni Sianturi, Hanno Hueckstaedt, Matthias Göring, Damian Feord, Stanley Leonard
  • Patent number: 9938379
    Abstract: Methods of forming a polyarylene sulfide and systems as may be utilized in carrying out the methods are described. Included in the formation method is a filtration process for treatment of a mixture, the mixture including a polyarylene sulfide, a salt byproduct of the polyarylene sulfide formation reaction, and a solvent. The filtration process includes maintaining the downstream side of the filter medium at an increased pressure. The downstream pressure can such that the boiling temperature of the mixture at the downstream pressure can be higher than the temperature at which the polyarylene sulfide is insoluble in the solvent.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: April 10, 2018
    Assignee: Ticona LLC
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Mark Shatzer, Jacob Grayson
  • Patent number: 9868824
    Abstract: A method for formation of a semi-crystalline polyarylene sulfide is described. The method can include reaction of sulfur-containing monomer with a dihaloaromatic monomer in an organic amide solvent to form a polymer following by combination of the polymer with a crystallization solution. The crystallization solution is pre-heated and the mixture formed is slowly cooled to crystallize the polymer.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: January 16, 2018
    Assignee: Ticona LLC
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Stanley Leonard, Jacob Grayson, Venkata Nekkanti
  • Patent number: 9587074
    Abstract: A multi-stage process and system for formation of a polyarylene sulfide is described. The multi-stage process can include at least three separate formation stages that can take place in three different reactors. The first stage of the formation process can include reaction of an alkali metal sulfide with an organic amide solvent to form a complex including a hydrolysis product of the solvent and an alkali metal hydrogen sulfide. The second stage of the formation process can include reaction of the complex formed in the first stage with a dihaloaromatic monomer to form a prepolymer, and the third stage can include further polymerization of the prepolymer with additional monomers to form the final product.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: March 7, 2017
    Assignee: Ticona LLC
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Stanley Leonard, Jacob Grayson, Venkata Nekkanti
  • Publication number: 20170009018
    Abstract: Methods of forming a polyarylene sulfide and systems as may be utilized in carrying out the methods are described. Included in the formation method is a filtration process for treatment of a mixture, the mixture including a polyarylene sulfide, a salt byproduct of the polyarylene sulfide formation reaction, and a solvent. The filtration process includes maintaining the downstream side of the filter medium at an increased pressure. The downstream pressure can such that the boiling temperature of the mixture at the downstream pressure can be higher than the temperature at which the polyarylene sulfide is insoluble in the solvent.
    Type: Application
    Filed: August 1, 2016
    Publication date: January 12, 2017
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Mark Shatzer, Jacob Grayson
  • Patent number: 9499512
    Abstract: A process for producing a cyclic acetal is disclosed. According to the process, a formaldehyde source is combined with an aprotic compound and contacted with a heterogeneous catalyst which causes the formaldehyde source to convert into a cyclic acetal such as trioxane. The catalyst, for instance, may comprise a solid catalyst such as an ion exchange resin. In one embodiment, the process is used for converting anhydrous formaldehyde gas to trioxane. The anhydrous formaldehyde gas may be produced form an aqueous formaldehyde solution by an extractive distillation.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: November 22, 2016
    Assignee: Ticona GmbH
    Inventors: Michael Haubs, Damian Feord, Joni Sianturi, Klaus Kurz, Jurgen Lingnau
  • Publication number: 20160311978
    Abstract: A method for formation of a semi-crystalline polyarylene sulfide is described. The method can include reaction of sulfur-containing monomer with a dihaloaromatic monomer in an organic amide solvent to form a polymer following by combination of the polymer with a crystallization solution. The crystallization solution is pre-heated and the mixture formed is slowly cooled to crystallize the polymer.
    Type: Application
    Filed: July 6, 2016
    Publication date: October 27, 2016
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Stanley Leonard, Jacob Grayson, Venkata Nekkanti
  • Patent number: 9469624
    Abstract: A process for producing cyclic acetals is described. A formaldehyde source is contacted with an aprotic compound in the presence of a catalyst to produce the cyclic acetals. The aprotic compound can increase conversion rates and/or efficiency. In one embodiment, the formaldehyde source is obtained from methanol. In particular, methanol can be converted into formaldehyde which is then converted into a cyclic acetal. In one embodiment, the cyclic acetal can then be used to produce oxymethylene polymers.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: October 18, 2016
    Assignee: Ticona GmbH
    Inventors: Michael Haubs, Michael Hoffmockel, Klaus Kurz, Jurgen Lingnau, Damian Feord
  • Patent number: 9403948
    Abstract: Methods of forming a polyarylene sulfide and systems as may be utilized in carrying out the methods are described. Included in the formation method is a filtration process for treatment of a mixture, the mixture including a polyarylene sulfide, a salt byproduct of the polyarylene sulfide formation reaction, and a solvent. The filtration process includes maintaining the downstream side of the filter medium at an increased pressure. The downstream pressure can such that the boiling temperature of the mixture at the downstream pressure can be higher than the temperature at which the polyarylene sulfide is insoluble in the solvent.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: August 2, 2016
    Assignee: Ticona LLC
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Mark Shatzer, Jacob Grayson
  • Patent number: 9388283
    Abstract: A method for formation of a semi-crystalline polyarylene sulfide is described. The method can include reaction of sulfur-containing monomer with a dihaloaromatic monomer in an organic amide solvent to form a polymer following by combination of the polymer with a crystallization solution. The crystallization solution is pre-heated and the mixture formed is slowly cooled to crystallize the polymer.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: July 12, 2016
    Assignee: Ticona LLC
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Stanley Leonard, Jacob Grayson, Venkata Nekkanti
  • Publication number: 20150087780
    Abstract: A method for formation of a semi-crystalline polyarylene sulfide is described. The method can include reaction of sulfur-containing monomer with a dihaloaromatic monomer in an organic amide solvent to form a polymer following by combination of the polymer with a crystallization solution. The crystallization solution is pre-heated and the mixture formed is slowly cooled to crystallize the polymer.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 26, 2015
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Stanley Leonard, Jacob Grayson, Venkata Nekkanti
  • Publication number: 20150087776
    Abstract: A multi-stage process and system for formation of a polyarylene sulfide is described. The multi-stage process can include at least three separate formation stages that can take place in three different reactors. The first stage of the formation process can include reaction of an alkali metal sulfide with an organic amide solvent to form a complex including a hydrolysis product of the solvent and an alkali metal hydrogen sulfide. The second stage of the formation process can include reaction of the complex formed in the first stage with a dihaloaromatic monomer to form a prepolymer, and the third stage can include further polymerization of the prepolymer with additional monomers to form the final product.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 26, 2015
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Stanley Leonard, Jacob Grayson, Venkata Nekkanti
  • Publication number: 20150087779
    Abstract: Methods of forming a polyarylene sulfide and systems as may be utilized in carrying out the methods are described. Included in the formation method is a filtration process for treatment of a mixture, the mixture including a polyarylene sulfide, a salt byproduct of the polyarylene sulfide formation reaction, and a solvent. The filtration process includes maintaining the downstream side of the filter medium at an increased pressure. The downstream pressure can such that the boiling temperature of the mixture at the downstream pressure can be higher than the temperature at which the polyarylene sulfide is insoluble in the solvent.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 26, 2015
    Inventors: Hendrich Chiong, Michael Haubs, Damian Feord, Mark Shatzer, Jacob Grayson
  • Publication number: 20140350216
    Abstract: A process for producing a cyclic acetal is disclosed. According to the process, a formaldehyde source is combined with an aprotic compound and contacted with a heterogeneous catalyst which causes the formaldehyde source to convert into a cyclic acetal such as trioxane. The catalyst, for instance, may comprise a solid catalyst such as an ion exchange resin. In one embodiment, the process is used for converting anhydrous formaldehyde gas to trioxane. The anhydrous formaldehyde gas may be produced form an aqueous formaldehyde solution by an extractive distillation.
    Type: Application
    Filed: November 23, 2012
    Publication date: November 27, 2014
    Inventors: Michael Haubs, Damian Feord, n/a Joni, Klaus Kurz, Jürgen Lingnau
  • Publication number: 20140329988
    Abstract: A process for producing cyclic acetals is described. A formaldehyde source is contacted with an aprotic compound in the presence of a catalyst to produce the cyclic acetals. The aprotic compound can increase conversion rates and/or efficiency. In one embodiment, the formaldehyde source is obtained from methanol. In particular, methanol can be converted into formaldehyde which is then converted into a cyclic acetal. In one embodiment, the cyclic acetal can then be used to produce oxymethylene polymers.
    Type: Application
    Filed: November 23, 2012
    Publication date: November 6, 2014
    Inventors: Michael Haubs, Michael Hoffmockel, Klaus Kurz, Jurgen Lingnau, Damian Feord
  • Publication number: 20140323686
    Abstract: A process for recovering volatile components from an oxymethylene polymer process is disclosed. The volatile components are removed from the process and the formaldehyde collected is converted to a cyclic acetal. The formaldehyde is converted to a cyclic acetal by contacting the formaldehyde with a catalyst in the presence of an aprotic solvent.
    Type: Application
    Filed: November 23, 2012
    Publication date: October 30, 2014
    Inventors: Klaus Kurz, Jurgen Lingnau, Michael Haubs, Michael Hoffmockel, Damian Feord
  • Publication number: 20060014986
    Abstract: Bisphenol-A is purified in a process which comprises the following steps: a) cooling a liquid mixture comprising bisphenol-A and water in a bisphenol-A crystallizer to form bisphenol-A crystals in a liquid phase; b) separating the bisphenol-A crystals from the liquid phase; c) dividing at least a portion of the liquid phase into a bisphenol-rich organic phase and a water-rich phase; d) feeding phenol and at least a portion of the bisphenol-rich organic phase into a adduct crystallizer to form a crystalline adduct of phenol and bisphenol-A in a mother liquor, and e) separating the crystalline adduct from the mother liquor. Bisphenol-A of high purity at a high yield is obtained.
    Type: Application
    Filed: November 12, 2003
    Publication date: January 19, 2006
    Inventors: Thomas Young, Damian Feord, Johann-Wilhelm Frey