Patents by Inventor Damian W. Ashmead

Damian W. Ashmead has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11057599
    Abstract: An image analysis system includes a video camera that collects YUV color images of a liquid sample disposed between a capital and a pedestal, the color images being collected while a light source shines light through an optical beam path between the capital and the pedestal, and a processor adapted to i) obtain from the YUV color images a grayscale component image and a light scatter component image, and ii) obtain at least one binary image of the grayscale component image and at least one binary image of the light scatter component image.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: July 6, 2021
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Alexander Grenov, Damian W. Ashmead, Kevin K. Kim, Francis J. Deck, Chris Xavier Kauffold
  • Publication number: 20200213569
    Abstract: An image analysis system includes a video camera that collects YUV color images of a liquid sample disposed between a capital and a pedestal, the color images being collected while a light source shines light through an optical beam path between the capital and the pedestal, and a processor adapted to i) obtain from the YUV color images a grayscale component image and a light scatter component image, and ii) obtain at least one binary image of the grayscale component image and at least one binary image of the light scatter component image.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 2, 2020
    Inventors: Alexander GRENOV, Damian W. ASHMEAD, Kevin K. KIM, Francis J. DECK, Chris Xavier KAUFFOLD
  • Patent number: 10630951
    Abstract: An image analysis system includes a video camera that collects YUV color images of a liquid sample disposed between a capital and a pedestal, the color images being collected while a light source shines light through an optical beam path between the capital and the pedestal, and a processor adapted to i) obtain from the YUV color images a grayscale component image and a light scatter component image, and ii) obtain at least one binary image of the grayscale component image and at least one binary image of the light scatter component image.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: April 21, 2020
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Alexander Grenov, Damian W. Ashmead, Kevin K. Kim, Francis J. Deck, Chris Xavier Kauffold
  • Patent number: 10481079
    Abstract: An embodiment of a path length calibration system is described that comprises a swing arm coupled to a first surface; a base coupled to a second surface configured to receive the sample; a position sensor system comprising a first component coupled to the swing arm and a second component coupled to the base, wherein the position sensor system is configured to provide an output voltage when the swing arm is in a down position; and a processor configured to calibrate a zero path length using the output voltage.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: November 19, 2019
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Damian W. Ashmead, James V. Howard, Kevin K. Kim, Andrew Martin Braasch
  • Publication number: 20180202919
    Abstract: An embodiment of a path length calibration system is described that comprises a swing arm coupled to a first surface; a base coupled to a second surface configured to receive the sample; a position sensor system comprising a first component coupled to the swing arm and a second component coupled to the base, wherein the position sensor system is configured to provide an output voltage when the swing arm is in a down position; and a processor configured to calibrate a zero path length using the output voltage.
    Type: Application
    Filed: March 14, 2018
    Publication date: July 19, 2018
    Inventors: Damian W. ASHMEAD, James V. HOWARD, Kevin K. KIM, Andrew Martin BRAASCH
  • Patent number: 9952138
    Abstract: The present invention is thus directed to an automated system and method of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Such a methodology and system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: April 24, 2018
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: John Magie Coffin, Damian W. Ashmead, Todd C. Strother
  • Patent number: 9952139
    Abstract: An apparatus includes a first pedestal surface coupled to i) a swing arm and to ii) a light source. The apparatus further includes a magnet, a base plate, a mechanical stop coupled to the base plate, and a second pedestal surface mechanically coupled to said base plate and configured to receive a liquid sample, said second pedestal surface being coupled to a spectrometer. The apparatus further includes a magnetic flux sensor located between north and south magnetic flux fields of the magnet such that the magnetic flux reaching the sensor while the mechanical stop is in physical contact with the swing arm provides a linear range of output of the magnetic flux sensor, and a processor adapted to calibrate the point for minimum optical path length using a threshold magnetic flux field emitted from the magnet and detected by the magnetic flux sensor.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: April 24, 2018
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Damian W. Ashmead, James V. Howard, Kevin K. Kim, Andrew Martin Braasch
  • Publication number: 20170082533
    Abstract: An apparatus includes a first pedestal surface coupled to i) a swing arm and to ii) a light source. The apparatus further includes a magnet, a base plate, a mechanical stop coupled to the base plate, and a second pedestal surface mechanically coupled to said base plate and configured to receive a liquid sample, said second pedestal surface being coupled to a spectrometer. The apparatus further includes a magnetic flux sensor located between north and south magnetic flux fields of the magnet such that the magnetic flux reaching the sensor while the mechanical stop is in physical contact with the swing arm provides a linear range of output of the magnetic flux sensor, and a processor adapted to calibrate the point for minimum optical path length using a threshold magnetic flux field emitted from the magnet and detected by the magnetic flux sensor.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 23, 2017
    Inventors: Damian W. ASHMEAD, James V. HOWARD, Kevin K. KIM, Andrew Martin BRAASCH
  • Publication number: 20170078634
    Abstract: An image analysis system includes a video camera that collects YUV color images of a liquid sample disposed between a capital and a pedestal, the color images being collected while a light source shines light through an optical beam path between the capital and the pedestal, and a processor adapted to i) obtain from the YUV color images a grayscale component image and a light scatter component image, and ii) obtain at least one binary image of the grayscale component image and at least one binary image of the light scatter component image.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 16, 2017
    Inventors: Alexander GRENOV, Damian W. ASHMEAD, Kevin K. KIM, Francis J. DECK, Chris Xavier KAUFFOLD
  • Publication number: 20160033390
    Abstract: The present invention is thus directed to an automated system and method of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Such a methodology and system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 4, 2016
    Inventors: John Magie COFFIN, Damian W. ASHMEAD, Todd C. STROTHER
  • Patent number: 9170191
    Abstract: The present invention is thus directed to an automated system and method of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Such a methodology and system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: October 27, 2015
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: John Magie Coffin, Damian W. Ashmead, Todd C. Strother
  • Patent number: 8730466
    Abstract: An optical device is provided that includes a converging lens device, a transmitting optical fiber, a sample holder, and a receiving optical fiber. The converging lens device focuses light onto the transmitting optical fiber, which receives the focused light through an entrance face and transmits the light from an exit face, through a sample, and onto the receiving optical fiber. The sample holder holds the sample for analysis. The receiving optical fiber receives the light through an entrance face of the receiving optical fiber after transmission through the sample. The converging lens device is positioned to focus the light onto the entrance face of the transmitting optical fiber such that a half-angle of the angular distribution of the focused light that reaches the entrance face of the transmitting optical fiber is selected to underfill an entrance aperture of the entrance face of the receiving optical fiber in both a spatial dimension and an angular dimension.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 20, 2014
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Damian W. Ashmead, Francis J. Deck
  • Publication number: 20140008539
    Abstract: The present invention is thus directed to an automated system and method of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Such a methodology and system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Inventors: John Magie COFFIN, Damian W. ASHMEAD, Todd C. STROTHER
  • Publication number: 20130016348
    Abstract: An optical device is provided that includes a converging lens device, a transmitting optical fiber, a sample holder, and a receiving optical fiber. The converging lens device focuses light onto the transmitting optical fiber, which receives the focused light through an entrance face and transmits the light from an exit face, through a sample, and onto the receiving optical fiber. The sample holder holds the sample for analysis. The receiving optical fiber receives the light through an entrance face of the receiving optical fiber after transmission through the sample. The converging lens device is positioned to focus the light onto the entrance face of the transmitting optical fiber such that a half-angle of the angular distribution of the focused light that reaches the entrance face of the transmitting optical fiber is selected to underfill an entrance aperture of the entrance face of the receiving optical fiber in both a spatial dimension and an angular dimension.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventors: Damian W. ASHMEAD, Francis J. DECK
  • Patent number: 8223338
    Abstract: An apparatus is described in which an optical fiber is mounted within a fiber optic holder which includes the non-rotating shaft of a linear actuator. The fiber holder may be held captive in order to restrain the fiber holder and, consequently, the fiber mounted therein, from rotating during operation of the linear actuator, thereby resulting in linear travel with minimal rotational effects and minimal change in optical alignment of the fiber during travel. In addition, an optical path length sensor in conjunction with an optimized absorbance method of operation is utilized herein to provide micron precision of the displacement between respective receiving and transmission fibers so as to enable precise absorbance measurements from about 0.005 up to about 2.0 Absorbance Units for any given path length.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: July 17, 2012
    Assignee: Nanodrop Technologies, LLC
    Inventors: Charles W. Robertson, Jr., Damian W. Ashmead, Thomas A. Tokash
  • Publication number: 20100085571
    Abstract: An apparatus is described in which an optical fiber is mounted within a fiber optic holder which includes the non-rotating shaft of a linear actuator. The fiber holder may be held captive in order to restrain the fiber holder and, consequently, the fiber mounted therein, from rotating during operation of the linear actuator, thereby resulting in linear travel with minimal rotational effects and minimal change in optical alignment of the fiber during travel. In addition, an optical path length sensor in conjunction with an optimized absorbance method of operation is utilized herein to provide micron precision of the displacement between respective receiving and transmission fibers so as to enable precise absorbance measurements from about 0.005 up to about 2.0 Absorbance Units for any given path length.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 8, 2010
    Inventors: Charles W. Robertson, JR., Damian W. Ashmead, Thomas A. Tokash
  • Patent number: 7623225
    Abstract: A photometer is provided with modular lighting units wherein each lighting unit includes one or more light emitters. A user may select a desired lighting unit and install it within a photometer base unit, and thereafter activate one or more of the emitters (which may emit light of different wavelengths) to illuminate a specimen. The light provided by the specimen in response can then be captured at a detector, and analyzed to provide an indication of the specimen's characteristics. Different lighting units may optionally include one or more input light adapters (filters or polarizers which modify the light provided by the emitter(s) to the specimen), and/or one or more output light adapters (filters or polarizers which modify the light provided by the specimen to the detector). Users may therefore select lighting units with emitters and light adapters which are particularly suited for detection/analysis of particular specimens and/or components therein.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 24, 2009
    Assignee: Nanodrop Technologies, LLC
    Inventors: Charles W. Robertson, Jr., Joel B. Hansen, Dale Heintzelman, Thomas A. Tokash, Paul S. Zdinak, Damian W. Ashmead, Jonathan Pundt
  • Publication number: 20090103077
    Abstract: A photometer is provided with modular lighting units wherein each lighting unit includes one or more light emitters. A user may select a desired lighting unit and install it within a photometer base unit, and thereafter activate one or more of the emitters (which may emit light of different wavelengths) to illuminate a specimen. The light provided by the specimen in response can then be captured at a detector, and analyzed to provide an indication of the specimen's characteristics. Different lighting units may optionally include one or more input light adapters (filters or polarizers which modify the light provided by the emitter(s) to the specimen), and/or one or more output light adapters (filters or polarizers which modify the light provided by the specimen to the detector). Users may therefore select lighting units with emitters and light adapters which are particularly suited for detection/analysis of particular specimens and/or components therein.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 23, 2009
    Inventors: Charles W. Robertson, JR., Joel B. Hansen, Dale Heintzelman, Thomas A. Tokash, Paul S. Zdinak, Damian W. Ashmead, Jonathan Pundt